[1]韩 建,占车生*,王飞宇,等.太行山区降水空间扩展方法与垂直地带性分析[J].山地学报,2017,(06):761-768.[doi:10.16089/j.cnki.1008-2786.000276]
 HAN Jian,ZHAN Chesheng*,WANG Feiyu,et al.Comparison of the Methods of Precipitation Spatial Expansionand Analysis of Vertical Zonality in the Taihang Mountains[J].Mountain Research,2017,(06):761-768.[doi:10.16089/j.cnki.1008-2786.000276]
点击复制

太行山区降水空间扩展方法与垂直地带性分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年06期
页码:
761-768
栏目:
山地生态与环境
出版日期:
2017-11-30

文章信息/Info

Title:
Comparison of the Methods of Precipitation Spatial Expansion and Analysis of Vertical Zonality in the Taihang Mountains
文章编号:
1008-2786-(2017)6-761-08
作者:
韩 建12占车生1*王飞宇12胡 实1
1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101; 2.中国科学院大学,北京 100049
Author(s):
HAN Jian12 ZHAN Chesheng1* WANG Feiyu12 HU Shi1
1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China.
关键词:
降水 地形 垂直地带性 空间展布 太行山
Keywords:
rainfall topography vertical zonality spatial expansion Taihang Mountain
分类号:
P333.6
DOI:
10.16089/j.cnki.1008-2786.000276
文献标志码:
A
摘要:
山区降水影响机制复杂,空间变异性强,由于观测资料稀缺,降雨数据从站点到空间的扩展一直是水文学界的难点。本文基于太行山区34个国家气象站和130个雨量站的降水实测数据,评估了距离平方反比法(IDS)、改进的降水海拔关系模型(MPAR)和两种综合方法(MPAR-IDS和IDS-MPAR)应用于太行山区降雨空间扩展的效果,探讨了山区降雨空间扩展的影响机制及方法优劣性。结果表明,4种空间扩展方法中IDS-MPAR精度最高,其年降水平均相对误差(MRE)仅8.7%,比IDS方法小14.0%,MPAR-IDS的误差比IDS低10.4%,MPAR与IDS的精度接近。基于IDS-MPAR插值结果的分析表明:太行山区降水分布规律主要受地形影响,降水等值线与山体走向基本一致; 在小五台山、南太行迎风坡山腰存在一个最大降水高度,在恒山、五台山则存在两个最大降水高度,分别在迎风坡山腰和山顶附近; 大同盆地等几个背风坡盆地降水很少,而喇叭口形的长治盆地降水较多。
Abstract:
The precipitation in mountainous area is complex in pattern partly because of strong spatial variability of rainfall distribution.Due to the scarcity of observation data, the expansion of rainfall data from sites to space has been a difficult issue of hydrography community.Based on the collected precipitation data from 34 national meteorological stations and 130 rainfall stations in the Taihang Mountains, in this paper it assessed the applicability of the Inverse Distance Square method(IDS), the Modified Precipitation-Altitude Relationship(MPAR)and other two approaches combined the previous two methods(i.e., MPAR-IDS and IDS-MPAR)to the spatial expansion of rainfall distribution in the Taihang Mountains, and then it discussed the mechanism influencing the rainfall expansion, its methodological advantages and disadvantages.Four kinds of criteria including Coefficient of Correlation(CC), Mean Relative Error(MRE), Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)were applied to compare the accuracy of the four interpolation methods.The pattern of spatial distribution of precipitation with the highest accuracy was used to analyze the topographic effects on precipitation, especially the issue of Maximum Precipitation Height(MPH).Results showed that the accuracy of IDS-MPAR was the highest among the four methods, with only 8.7% annual MRE, 14.0% smaller than IDS method, and the error of MPAR-IDS was 10.4% lower than that of IDS whereas MPAR and IDS had close accuracy.Based on IDS-MPAR interpolation analysis, it found that the spatial variation of precipitation in the Taihang Mountains was mainly affected by local terrain, and the contour of precipitation was basically parallel to the mountain stretch.There existed a maximum precipitation height on the hillside of Xiaowutai Mountain as well as South Taihang Mountain.Two maximum precipitation heights in Heng Mountain and Wutai Mountain was found at windward hillside and the peak, respectively, In Datong Basin and other leeward slope basin, rainfall was very low, while the bell-shaped Changzhi basin received more precipitation.

参考文献/References:

[1] 傅抱璞.地形和海拔高度对降水的影响 [J].地理学报, 1992, 47(4): 302-14.[FU Baopu.The effects of topography and elevation on precipitation.Acta Geographica Sinica, 1992, 47(4): 302-314.]
[2] 林之光.地形降水气候学 [M].北京: 科学出版社, 1995.[LIN Zhiguang.Climatology of orographic precipitation.Beijing: Science Press, 1995: 1-105.]
[3] 李子良.地形降水试验和背风回流降水机制 [J].气象, 2006, 32(5): 10-5.[LI Ziliang.Simulations of precipitation induced by the reversal flow in the lee of mountain.Meteorogical Monthly, 2006, 32(5): 10-15.]
[4] 廖菲, 洪延超, 郑国光.地形对降水的影响研究概述 [J].气象科技, 2007, 35(3): 309-16.[LIAO Fei, HONG Yanchao, ZHENG Guoguang.Review of orographic influences on surface precipitation.Meteorogical Science and Technology, 2007, 35(3): 309-316.]
[5] 何红艳, 郭志华, 肖文发.降水空间插值技术的研究进展 [J].生态学杂志, 2005, 24(10): 1187-91.[HE Hongyan, GUO Zhihua, XIAO Wenfa.Review on spatial interpolation techniques of rainfall.Chinese Journal of Ecology, 2005, 24(10): 1187-1191.]
[6] 赵娜, 岳天祥, 王晨亮.1951-2010年中国季平均降水高精度曲面建模分析 [J].地理科学进展, 2013, 32(1): 49-58.[ZHAO Na, YUE Tianxiang, WANG Chenliang.Surface modeling of seasonal mean precipitation in China during 1951-2010.Progress in Geography, 2013, 32(1): 49-58.]
[7] SEVRUK B.Regional dependency of precipitation-altitude relationship in the Swiss Alps [J].Climatic Change, 1997, 36(3-4): 355-69.
[8] 傅抱璞.山地气候 [M].北京: 科学出版社, 1983:204-220.[FU Baopu.Mountain climate.Beijing: Science Press, 1983: 204-220.]
[9] 翁笃鸣.第五讲 山地降水状况的分析 [J].气象, 1985,(6): 39-43.[WENG Duming.The fifth lesson: analysis of orographic precipitation condition.Meteorogical Monthly, 1985,(6): 39-43.]
[10] 汤懋苍.祁连山区降水的地理分布特征 [J].地理学报, 1985, 40(4): 323-32.[TANG Maocang.The distribution of precipitation in mountain Qilian.Acta Geographica Sinica, 1985, 40(4): 323-332.]
[11]刘俊峰, 陈仁升, 卿文武等.基于TRMM降水数据的山区降水垂直分布特征 [J].水科学进展, 2011, 22(4): 447-54.[LIU Junfeng, CHEN Rensheng, QING Wenwu, et al.Study on the vertical distribution of precipitation in mountainous regions using TRMM data.Advances in Water Science, 2011, 22(4): 447-454.]
[12] 王菱.华北山区坡地方位和海拔高度对降水的影响 [J].地理科学, 1996,(2): 150-8.[WANG Ling.Impacts of orientations of slopes and elevation on rainfall in mountainous regions [J].Scientia Geographica Sinica, 1996,(2): 150-8.]
[13] 伍立群, 李学辉.高山地区年降水量随高程变化分析 [J].云南地理环境研究, 2004, 16(2): 4-7.[WU Liqun, LI Xuehui.Analysis on changes of annual precipitation with altitude in high mountain areas [J].Yunnan Geographic Environment Research, 2004, 16(2): 4-7.]
[14] JOHANSSON B, CHEN D L.The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling [J].International Journal of Climatology, 2003, 23(12): 1523-35.
[15] 陈贺, 李原园, 杨志峰等.地形因素对降水分布影响的研究 [J].水土保持研究, 2007, 14(1): 119-22.[CHEN He, LI Yuanyuan, YANG Zhifeng, et al.Research on relationship between terrain factors and precipitation.Research of Soil and Water Conservation, 2007, 14(1): 119-22.]
[16] 舒守娟, 王元, 熊安元.中国区域地理、地形因子对降水分布影响的估算和分析 [J].地球物理学报, 2007,(6): 1703-12.[SHU Shoujuan, WANG Yuan, XIONG Anyuan.Estimation and analysis for geographic and orographic influences on precipitation distribution in China [J].Chinese Journal of Geophysics, 2007,(6): 1703-12.]
[17] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M.Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity [J].Geographical Analysis, 1996, 28(4): 281-98.
[18] BRUNSDON C, MCCLATCHEY J, UNWIN D.Spatial variations in the average rainfall-altitude relationship in Great Britain: an approach using geographically weighted regression [J].International Journal of Climatology, 2001, 21(4): 455-66.
[19] 刘小婵, 张洪岩, 赵建军等.东北地区TRMM数据降尺度的GWR模型分析 [J].地球信息科学学报, 2015, 17(09): 1055-62.[LIU Xiaochan, ZHANG Hongyan, ZHAO Jianjun, et al.Spatial downscaling of TRMM precipitaiton databased on GWR model in Northeast China [J].Journal of Geo-information Science, 2015, 17(09): 1055-62.]
[20] Hu Q, Yang H, Meng X, et al.Satellite and gauge rainfall merging using geographically weighted regression[J].Proceedings of the International Association of Hydrological Sciences, 2015, 368:132-137.
[21] 胡庆芳.基于多源信息的降水空间估计及其水文应用研究 [D].清华大学, 2013.[HU Qingfang.Rainfall spatial estimation using multi-source information and its hydrological application [D].Tsinghua University, 2013: 29-45.]
[22] XU Shiguang, WU Chaoyu, WANG Li, et al.A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics [J].Remote Sensing of Environment, 2015, 162(119-40).
[23] 王宁练, 贺建桥, 蒋熹等.祁连山中段北坡最大降水高度带观测与研究 [J].冰川冻土, 2009, 31(3): 395-403.[WANG Ninglian, HE Jianqiao, JIANG Xi, et al.Study on the zone of maximum precipitation in the north slopes of the Central Qilian Mountains.Journal of Glaciology and Geocryology, 2009, 31(3): 395-403.]
[24] GOUVAS M A, SAKELLARIOU N, XYSTRAKIS F.The relationship between altitude of meteorological stations and average monthly and annual precipitation [J].Studia Geophysica Et Geodaetica, 2009, 53(4): 557-70.
[25] DALY C, GIBSON W P, TAYLOR G H, et al.A knowledge-based approach to the statistical mapping of climate [J].Climate Research, 2002, 22(2): 99-113.
[26] NALDER I A, WEIN R W.Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest [J].Agricultural and Forest Meteorology, 1998, 92(4): 211-25.
[27] BASIST A, BELL G D, MEENTEMEYER V.Statistical Relationships between Topography and Precipitation Patterns [J].Journal of Climate, 1994, 7(9): 1305-15.
[28] 张正勇, 何新林, 刘琳等.中国天山山区降水空间分布模拟及成因分析 [J].水科学进展, 2015, 26(4): 500-8.[ZHANG Zhengyong, HE Xinlin, LIU Lin, et al.Spatial distribution of rainfall simulation and the cause analysis in China's Tianshan Mountains area.Advances in Water Science, 2015, 26(4): 500-508.]
[29] 穆振侠, 姜卉芳.基于TRMM/TMI的天山西部山区降水垂直分布规律的研究 [J].干旱区资源与环境, 2010,(10): 66-71.[MU Zhenxia, JIANG Huifang.The vertical distribution law of precipitation in the western TianshanMountain based on TRMM/TMI [J].Journal of Arid Land Resources and Environment, 2010,(10): 66-71.]
[30] 郭康.气流二次爬坡和太行山东坡雨量分布特点 [J].气象, 1981,(3): 22-3.[GUO Kang.Twice climbing of airflow and the distribution feature of precipitation on east slope of the Taihang Mountain.Meteorological Monthly, 1981,(3): 22-3.]
[31] 侯明.太行山两个最大降水高度带问题探讨 [J].地理学与国土研究, 1992, 8(4): 23-6.[HOU Ming.Discussion on the two maximum precipitation zones of Taihang Mountain issue.Geography and Territorial Research, 1992, 8(4): 23-6.]
[32] 徐宗学, 张楠.黄河流域近50年降水变化趋势分析 [J].地理研究, 2006,(1): 27-34.[XU Zongxue, ZHANG Nan.Long term tread of precipitation in the Yellow River basin during the past50 years [J].Geographical Reasearch, 2006,(1): 27-34.]
[33] 林忠辉, 莫兴国, 李宏轩等.中国陆地区域气象要素的空间插值 [J].地理学报, 2002,(1): 47-56.[LIN Zhonghui, MO Xingguo, LI Hongxuan, et al.Comparison of three spatial interpolation methodsfor climate variables in China [J].Acta Geographica Sinica, 2002,(1): 47-56.]
[34] 程树林.太行山燕山气候考察研究 [M].气象出版社, 1993: 49-64.[CHENG Shulin.Research on the climate review of Taihang Mountain and Yan Mountain [M].Beijing:Meteorological Press, 1993: 49-64.]
[35] 张涛, 李宝林, 何元庆等.基于TRMM订正数据的横断山区降水时空分布特征 [J].自然资源学报, 2015,(2): 260-70.[ZHANG Tao, LI Baolin, HE Yuanqing, et al.Spatial and temporal distribution of precipitation based on corrected TRMM data in Hengduan Mountains [J].Journal of Natural Resources, 2015,(2): 260-70.]
[36] 吴建峰, 陈阿林, 嵇涛等.TRMM降水数据在复杂山地的精度评估——以重庆市为例 [J].水土保持通报, 2014,(4): 201-7.[WU Jianfeng, CHEN Alin, JI Tao, et al.Accuracy evaluation of Tropical Rainfall Measuring Mission precipitation data in complex mountainous areas-taking Chongqing City as an example [J].Bulletin of Soil and Water Conservation, 2014,(4): 201-7.]

相似文献/References:

[1]王振亮,王振一,顾新庆,等.爆破整地造林工程的坡地稳定性分析——以太行山低山丘陵区为例[J].山地学报,1999,(01):60.
[2]康世昌,秦大河,姚檀栋,等.希夏邦马峰达索普冰川高海拔区夏季风期间大气降水的δ~(18)O特征[J].山地学报,2000,(01):1.
[3]张丽旭,魏文寿.天山西部中山带积雪变化趋势与气温和降水的关系——以巩乃斯河谷为例[J].山地学报,2001,(05):403.
[4]马力,曾祥平,向波.重庆市山体滑坡发生的降水条件分析[J].山地学报,2002,(02):246.
[5]鲍文,包维楷,何丙辉,等.森林生态系统对降水的分配与拦截效应[J].山地学报,2004,(04):483.
[6]马占山,张强,朱蓉,等.三峡库区山地灾害基本特征及滑坡与降水关系[J].山地学报,2005,(03):319.
[7]解明恩,程建刚,范菠.云南滑坡泥石流灾害的气象成因与监测[J].山地学报,2005,(05):571.
[8]余新晓,张晓明,武思宏,等.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J].山地学报,2006,(01):19.
[9]潘学鹏,吴喜芳,沈彦俊,等.三江并流河源区植被覆盖度对气候要素的响应[J].山地学报,2015,(02):218.
 PAN Xuepeng,WU Xifang,et al.Responses of Vegetation Coverage Changes to Climate Factors in the Source Regions of Three Parallel Rivers[J].Mountain Research,2015,(06):218.
[10]蓝永超,丁宏伟,胡兴林,等.黑河山区气温与降水的季节变化特征及其区域差异[J].山地学报,2015,(03):294.
 LAN Yongchao,DING Hongwei,HU Xinglin,et al.The Seasonal Change Characteristics of Temperature, Precipitation in the Mountain Areas of the Heihe River and Their Regional Differences[J].Mountain Research,2015,(06):294.

备注/Memo

备注/Memo:
收稿日期(Received date):2016-08-13; 改回日期(Accepted date):2017-10-24
基金项目(Foundation item):国家重点基础研究发展计划(2015CB452701),国家自然科学基金项目(41571019,41271003)[National Key Basic Research and Development Program of China(2015CB452701), National Natural Science Foundation of China(41571019, 41271003).]
作者简介(Biography):韩建(1993-), 男, 陕西渭南人, 硕士, 主要从事流域水循环模拟研究[Han Jian(1993-), male, born in Weinan, Shaanxi Province, major in hydrology and water resources.] E-mail: hanj.15s@igsnrr.ac.cn.
*通讯作者(Corresponding author):占车生(1975-), 男, 湖北黄冈人, 研究员, 主要从事气候变化对水文水资源的影响研究[Zhan Chesheng,(1975-), male, born in Huanggang, Hubei Province, associate research fellow, mainly engaged in research of impacts of climate change on hydrology and water resources.] E-mail: zhancs@igsnrr.ac.cn.
更新日期/Last Update: 2017-11-30