[1]张 文,刘 勇,王运生,等.地震作用下边坡及不利地质体的动力特征[J].山地学报,2016,(06):732-740.[doi:10.16089/j.cnki.1008-2786.000180]
 ZHANG Wen,LIU Yong,WANG Yunsheng,et al.Analysis of Dynamic Characteristics of Slope and Unfavorable Geological Body Under Earthquake[J].Mountain Research,2016,(06):732-740.[doi:10.16089/j.cnki.1008-2786.000180]
点击复制

地震作用下边坡及不利地质体的动力特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年06期
页码:
732-740
栏目:
山地灾害
出版日期:
2016-12-08

文章信息/Info

Title:
Analysis of Dynamic Characteristics of Slope and Unfavorable Geological Body Under Earthquake
文章编号:
1008-2786-(2016)6-732-09
作者:
张 文12刘 勇2王运生2唐 起2陈怡西2
1.中国地质科学院探矿工艺研究所,四川 成都 611743;
2.成都理工大学,四川 成都 610059
Author(s):
ZHANG Wen12LIU Yong12WANG Yunsheng1TAN Qi1CHEN Yixi
1.State Key Laboratory of Geohazad Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China;
2.Institute of Exploration Technology CAGS, Chengdu 611743, China
关键词:
地震波加速度线型坡山坳节理软弱夹层
Keywords:
Seismic waves acceleration linear slope col joint weak interlayer
分类号:
P315.9,P642.2
DOI:
10.16089/j.cnki.1008-2786.000180
文献标志码:
A
摘要:
深切谷坡浅表部卸荷裂隙发育,风化强烈,致使浅表层介质性质出现差异,成为非连续介质,地震动力响应由此变得复杂。根据青川地震监测数据分析线型坡及山坳处的地震动力响应特征,并结合适用于分析岩质边坡运动过程的不连续变形分析方法(DDA),对不同岩质边坡及岩体中出现节理和软弱夹层等不利地质体时的动力特征进行分析,揭示在一定高程下线型坡上地震波加速度随高程增加而增大,且垂直山脊方向的地震波峰值加速度放大系数大于沿山脊方向,最大可达3.12倍;山坳处的地震波加速度较谷底会出现一定程度的衰减。同一规模边坡,岩质越硬加速度放大系数越大;当边坡中存在节理及软弱夹层时,地震波传播会受到反射和透射的影响,从而影响边坡的动力响应特征。分析表明,岩体弹模较大时,节理对地震波传播的透射作用较强,且节理间距与输入波长的比值小于临界值时,其比值越大,节理对地震波的透射作用越强;岩体分界面下部岩性较上部岩性硬时,随着两种岩性弹模差别增大,透射波峰值加速度降低越明显,而反之分界面以下岩性较上部软时,随着两种岩性弹模差值越大,透射波加速度放大越显著;软弱夹层厚度以及其与周围岩体波阻抗比较大时,地震波经过软弱夹层时的透射系数较小。
Abstract:
In the superficial part of the deep valley, the unloading fractures are developed and the weathering is intense. As a result, the superficial layer becomes a discontinuous medium and the nature of the medium is different. Thus the seismic response becomes complicated. Based on the Qingchuan earthquake monitoring data, the seismic response characteristics of linear slope and col are analyzed, and combined with the discontinuous deformation analysis(DDA)which is suitable for analyzing rock slope movement process, the dynamic characteristics of different rock slopes and rock masses are analyzed when there are joint and weak interlayer and other unfavorable geologic bodies. It is revealed that the acceleration of seismic wave on the linear slope of a certain elevation increases with the elevation, and the peak acceleration amplification coefficient of the seismic wave in the direction of vertical ridge is larger than that of the seismic waves along the ridge, and the maximum is 3.12 times; The acceleration of the seismic wave at the col is attenuated to a certain extent compared with that of seismic wave at the bottom; In the same scale slope, the harder the rock mass is, the larger the acceleration amplification coefficient is; When there are joints and weak interlayers in the slope, the seismic wave propagation will be affected by the reflection and transmission, thus affecting the dynamic response characteristics of the slope. The analysis shows that when the elastic modulus of the rock mass is large, the transmission effect of the joint on seismic wave propagation is stronger, and when the ratio of joint spacing and input wavelength is less than critical value, the greater the ratio is, the stronger the transmission effect of the joint on the seismic wave; When the lithology of the lower part of the rock is harder than that of the upper part of the rock, with the increase of the difference between the two elastic modulus of the rock mass, the decrease of the peak acceleration of the transmitted wave is more obvious. While on the contrary, the lithology of the lower part of the rock is softer than that of the upper part of the rock, with the increase of the difference between the two elastic modulus of the rock mass, the acceleration of the transmitted wave increases more obviously. When the thickness of the weak interlayer and the wave impedance between the weak interlayer and the surrounding rock mass are relatively large, the transmission coefficient of seismic waves passing through the weak interlayer is smaller.

参考文献/References:

[1] 谭万沛,王成华,姚令侃,等.暴雨泥石流滑坡的区域预测与预报-以攀西地区为例[M].成都:四川科学技术出版社,1994:149-183[Tan Wanpei, Wang Chenghua, Yao Lingkan. Prediction and forecast of precipitation debris flow and landslide—take West Sichuan as a case study [M]. Chengdu: Sichuan Science and Technology Press,1994:149-183]
[2] 李泳,刘晶晶,陈晓清,等.泥石流流域的概率分布[J].四川大学学报:工程科学版,2007,39(6):36-40[Li Yong, Liu Jingjing, Chen Xiaoqing, et al. Probability distribution of debris-flow valleys[J]. Journal of Sichuan University:Engineering Science Edition,2007,39(6):36-40]
[3] 嵇涛,杨华,刘睿,等.TRMM卫星降水数据在川渝地区的适用性分析[J].地理科学进展,2014,33(10):1375-1386[Ji Tao, Yang Hua, Liu Rui, et al. Applicability analysis of the TRMM precipitation data in the Sichuan-Chongqing region[J]. Geographical Science Progress, 2014,33(10):1375-1386]
[4] 刘俊峰,陈仁升,韩春坛,等.多卫星遥感降水数据精度评价[J].水科学进展,2010,21(3):343-348[Liu Junfeng, Chen Shengren, Han Chuntan, et al. Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MODIS snow-cover product [J].Advances in Water Science, 2010,21(3):343-348]
[5] 白爱娟,方建刚,张科翔.TRMM卫星资料对陕西周边地区夏季降水的探测[J].灾害学,2008,23(2):41-45[Bai Aijuan, Fang Jiangang, Zhang Kexiang. Summer rainfall in Shanxi and its neighborhood regions observed by TRMM satellite[J]. Journal of Catastrophology,2008,23(2):41-45]
[6] Huffman G.J., Adler R.F., Bolvin D., et al. The TRMM multi-satellite precipitation analysis Quasi-Global, Multi-Year, combined-sensor precipitation estimates at fine scale[J]. Journal of Hydro Meteorology, 2007,8(1):38-55
[7] 刘晓阳,杨洪平,李建通,等.新一代天气雷达定量降水估测集成系统[J].气象,2010,36(4):90-95[Liu Xiaoyang, Yang Hongping, Li Jiantong, et al. CINRAD radar quantitative precipitation estimation group system[J]. Meteorological Monthly, 2010,36(4):90-95]
[8] 李柏,古庆同,李瑞义,等.新一代天气雷达灾害性天气监测能力分析及未来发展[J].气象,2013,39(3):265-280[Li Bai, Gu Qingtong, Li ruiyi, et al. Analyses on disastrous weather monitoring capability of CINRAD and future development[J]. Meteorological Monthly, 2013,39(3):265-280]
[9] 高晓荣,梁建茵,李春晖.雷达定量降水估计技术及效果评估[J].热带气象学报,2012,28(1):77-88[Gao Xiaorong, Liang Jianyin, Li Chunhui. Radar quantitative precipitation estimation techniques and effect evaluation[J].Journal of Tropical Meteorology, 2012,28(1):77-88]
[10] 迟竹萍,刘欣,陈金敏.春秋季层状云降水过程Z-I关系计算与讨论.气象,2000,26(1):35-37[Chi Zhuping, Liu Xin, Chen Jinmin. Calculation and analysis of Z-I relation among precipitation processes caused by sheet cloud in Spring and Autumn[J].Meteorology, 2000,26(1):35-37]
[11] 殷秀良,孙成志,袁群哲,等.雨区衰减对双线偏振雷达测雨的影响研究.南京气象学院学报,2006,29(3):402-407[Yin Xiuliang, Sun Chengzhi, Yuan Qunzhe, et al. Study on rain-include attenuation effect on rainfall estimation using dual linear polarization radar[J]. Journal of Nanjing Institute of Meteorology, 2006,29(3):402-407]
[12] 胡志群,刘黎平,楚荣忠,等.X波段双线偏振雷达不同衰减订正方法对比及其对降水估测影响研究[J].气象学报,2008,66(2):251-261[Hu Zhiqun, Liu Liping, Chu Rongzhong,et al. Comparison of different attenuation correction methods and their effects on estimated rainfall using X-band dual linear polarimetric radar. Acta Meteorologica Sinica,66(2):251-261]
[13] 丁一汇,胡国权.1998年中国大洪水时期的水汽收支研究[J].气象学报,2003,61(2):129-145[Ding Yihui, Hu Guoquan. A study on water vapor budget over China during the 1998 severe flood periods[J]. Acta Meteorologica Sinica, 2003,61(2):129-145]
[14] 李英,陈联寿,徐祥德.水汽输送影响登陆热带气旋维持和降水的数值试验[J].大气科学,2005,29(1):91-98[Li Ying, Chen Lianshou, Xu Xiangde. Numerical experiments of the impact of moisture transportation on sustaining of the landfilling tropical cyclone and precipitation[J]. Chinese Journal of Atmospheric Sciences, 2005,29(1):91-98]
[15] 毕研盟,毛节泰,李成才,等.利用GPS的倾斜路径观测暴雨过程中的水汽空间分布[J]. 大气科学, 2006,30(6):1169-1176[Bi Yanmeng, Mao Jietai, Li Chengcai, et al. Spatial distribution of water vapor observed with GPS along slant path in a storm system [J]. Chinese Journal of Atmospheric Sciences, 2006,30(6):1169-1176]
[16] 宾振,吴瑶,邱璐,等.江西地基GPS遥感大气可降水量变化特征及精度[J]. 高原气象,2013,32(5):1503-1[Bin Zhen,Wu Yao,Qiu Lu,et al.Variation characteristic and accuracy of precipitable water vapor from ground-based GPS remote sensing in Jiangxi[J]. Plateau Meteorology,2013,32(5):1503-1509]
[17] 程航,程相坤,朱晶,等. GPS遥感大气可降水量在大连地区3次降水过程中的应用[J]. 气象与环境学报, 2014, 30(5):38-48[Cheng Hang, Cheng Xiangkun, Zhu Jing, et al. Application of precipitable water vapor from ground based GPS to three precipitation processes in Dalian Region[J]. Journal of Meteorology and Environment, 2014, 30(5):38-48]
[18] 罗梦森,曾明剑,景元书,等. GPS反演的大气可降水量变化特征及其与降水的关系研究[J].气象科学,2013,33(4):418-423[Luo Mengsen, Zeng Mingjian, Jing Yuanshu, et al. Change characteristics of GPS PWV and its relationship with precipitation [J]. Journal of Meteorological Sciences, 2013,33(4):418-423]
[19] 杜榕恒,康志成,陈循谦,等.云南小江泥石流综合考察与防治规划研究[M].重庆:科学技术文献出版社重庆分社.1987:31-84[Du Rongheng, Kang Zhicheng,Chen Xunqiang,et al. Xiaojiang debris flow comprehensive investigation and prevention planning study [M]. Chongqing: Science and Technology Literature Publishing House, Chongqing Branch. 1987:31-84]
[20] 张军,熊刚.云南蒋家沟泥石流运动观测资料集[M].北京:科学出版社,1998.[Zhang Jun, Xiong Gang. Debris flow observational data sets in Jiangjia Gully Yunnan[M]. Beijing: Science Press,1998.]
[21] Bevis M, B U singer S, Herring T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the Global Positing System[J]. J.Geophys, Res., 1992,997:15787-15801
[22] 李国平,等.地基GPS气象学[M].北京:科学出版社.2010:97-129[Li Guoping, et al. Ground-based GPS meteorology[M]. Beijing: Science Press.2010:97-129]
[23] 杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学, 2002, 26(1):9 -21[Yang Jingmei, Qiu Jinheng. A method for estimating precipitable water and effective water vapor content from ground humidity parameters [J]. Chinese Journal of Atmospheric Sciences,2002, 26(1):9-21]
[24] Sepulveda S A, Rebolledo S, Vargas G. Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response [J]. Quaternary International, 2006, 158(1): 83-95
[25] 苏鹏程, 刘希林, 郭洁. 四川泥石流灾害与降雨关系的初步探讨[J]. 自然灾害学报, 2006, 15(4): 19-23[Su Pengcheng, Liu Xilin, Guo Jie. Primary analysis of relationship between debris flows and rainfalls in Sichuan Province [J]. Journal of Natural Disasters, 2006, 15(4): 19-23]
[26] 曹云昌, 方宗义, 夏青. GPS遥感的大气可降水量与局地降水关系的初步分析[J]. 应用气象学报,2005,16(1):54-59[Cao Yunchang, Fang Zongyi, Xia Qing. Relationship between GPS precipitable water vapor and precipitation[J]. Journal of Applied Meteorological Science, 2005, 16(1):54-59]
[27] 郭洁,李国平.川渝地区大气可降水量的气候特征以及与地面水汽量的关系[J]. 自然资源学报, 2009, 24(2): 344-350[Guo Jie, Li Guoping. Climatic characteristics of precipitable water vapor and relations to surface water vapor column in Sichuan and Chongqing Region[J]. Journal of Natural Resources, 2009, 24(2): 344-350]

备注/Memo

备注/Memo:
基金项目(Foundation item):中国地质调查局项目(DD20160338)[China geological survey project(12120113010100DD20160338)]
作者简介(Biography):张文(1985-),男,山西临汾人,硕士,工程师,从事地质工程专业研究 [Zhang Wen(1985-),male,born in Linfen,Shanxi,M.Sc,engineer, engaged in geological engineering] E-mail: 3463287@qq.com
更新日期/Last Update: 2016-11-30