[1]邓 丽,常 宏*,沈俊杰.塔什库尔干谷地古滑坡堰塞湖事件重建及其地貌响应[J].山地学报,2023,(1):82-92.[doi:10.16089/j.cnki.1008-2786.000732]
 DENG Li,CHANG Hong*,SHEN Junjie.A Paleolandslide-Dammed Lake and Its Impact on Geomorphology in Taxkorgan Valley, Xinjiang, China[J].Mountain Research,2023,(1):82-92.[doi:10.16089/j.cnki.1008-2786.000732]
点击复制

塔什库尔干谷地古滑坡堰塞湖事件重建及其地貌响应
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第1期
页码:
82-92
栏目:
山地灾害
出版日期:
2023-01-20

文章信息/Info

Title:
A Paleolandslide-Dammed Lake and Its Impact on Geomorphology in Taxkorgan Valley, Xinjiang, China
文章编号:
1008-2786-(2023)1-82-11
作者:
邓 丽12常 宏13*沈俊杰12
(1.中国科学院地球环境研究所,西安 710061; 2.中国科学院大学,北京 100049; 3.中国科学院第四纪科学与全球变化卓越中心,西安 710061 )
Author(s):
DENG Li12 CHANG Hong13* SHEN Junjie12
(1. Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China)
关键词:
帕米尔高原 古滑坡 塔什库尔干谷地 堰塞湖 河流陡峭指数
Keywords:
the Pamirs paleolandslide the Taxkorgan valley dammed lake the steepness index(Ksn)
分类号:
P531
DOI:
10.16089/j.cnki.1008-2786.000732
文献标志码:
A
摘要:
塔什库尔干谷地构造活动频繁,滑坡、泥石流等自然灾害频发,滑坡体堵塞河流形成堰塞湖,堰塞体溃决后引发特大洪水。开展塔什库尔干谷地古堰塞湖的形成演化研究,可以提高对堰塞湖灾害的认知,预防地质灾害发生和降低灾害损失。目前已有对塔什库尔干曲曼村古堰塞湖湖相沉积形成年代和所记录的古环境信息研究,然而针对该湖泊的形成演化及形成后的地貌响应却鲜有开展。本研究以野外调查为基础,结合室内分析,对曲曼古滑坡堰塞湖的区域地貌和残留湖相沉积物特征进行了详细的分析。研究结果表明:(1)曲曼古滑坡堰塞湖形成可能是由于古地震诱发滑坡导致的,残留滑坡坝的表面积约为4.30×105 m2,其体积约为2.30×107 m3,所形成的堰塞湖最大湖面积约为2.01×107 m2,最大库容量约为1.12×109 m3,溃决时的洪峰流量约为49 507 m3/s;(2)滑坡坝上游陡峭指数大于滑坡坝下游陡峭指数,说明残留滑坡坝仍对现代河道的地貌形态有一定影响,下游方向仍在进行较为强烈的地貌调整。本研究深入研究塔什库尔干古堰塞湖,可以为区域地貌演化及地质灾害发育过程研究提供一定参考。
Abstract:
The Taxkorgan valley is a typical area of frequent tectonic activities and geological hazards. Ancient landslides and debris flows dominated in this valley, quite often followed by sliding geo-bodies blocking rivers in the downstream and formed lots of barrier lakes. Past research concerns were mostly made to the formation age and paleoenvironmental profile of these paleolandslide-dammed lakes, but little to the formation and evolution of the lakes and resulting geomorphic responses to this process. It is imperative to exemplify the formation and evolution of the paleolandslide-dammed lakes by a case study for better control of barrier-lake-break-flood and prevention.In this study, a plot of paleolandslide-dammed lake sediments of the Taxkorgan valley at the Quman village, Xinjiang, China was targeted for investigation of the geomorphology and characteristics of sediments. It was done by field survey, analysis of a digital elevation model(DEM)and remote sensing images.Following results were obtained:(1)This lake was possibly formed by a paleoearthquake-triggered landslide, with a residual dam surface area of around 4.30×105 m2 and a volume of about 2.30×107 m3. Approximately, the lake's maximum surface area was 2.01×107 m2 with water volume 1.12×109 m3, and its maximum flow during an event of barrier-lake-break-flood was approximately 49 507 m3/s.(2)The steepness index(Ksn)for the upstream of the landslide dam was greater than the Ksn for the downstream of the landslide dam, representing a response to a relatively strong geomorphic reshape process. This result was ascribed to the lasting impact of the landslide dam on the Taxkorgan river. Our findings provide references to future studies on regional geomorphic evolution and the emergence of geological hazards in the Taxkorgan valley.

参考文献/References:

[1] COSTA J E, SCHUSTER R L. The formation and failure of natural dams [J]. Geological Society of America Bulletin, 1988, 100(7): 1054-1068. DOI: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO; 2
[2] KORUP O, MONTGOMERY D R, HEWITT K. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes [J]. Proceedings of the National Academy of Sciences, 2010, 107(12): 5317-5322. DOI: 10.1073/pnas.0907531107
[3] KORUP O, STROM A L, WEIDINGER J T. Fluvial response to large rock-slope failures: Examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand [J]. Geomorphology, 2006, 78(1/2): 3-21. DOI: 10.1016/j.geomorph.2006.01.020
[4] COOK K L, ANDERMANN C, GIMBERT F, et al. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya [J]. Science, 2018, 362(6410): 53-57. DOI: 10.1126/science.aat4981
[5] OUIMET W B, WHIPPLE K X, ROYDEN L H, et al. The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau(Sichuan, China)[J]. Geological Society of America Bulletin, 2007, 119(11-12): 1462-1476. DOI: 10.1130/B26136.1
[6] 程雪峰, 范念念, 刘维明, 等. 两万年来岷江汶川古堰塞湖事件研究[J]. 山地学报, 2020, 38(4): 561-570. [CHENG Xuefeng, FAN Niannian, LIU Weiming, et al. A paleo-lake in the Minjiang River since 20,000 years before present in Wenchuan,China [J]. Mountain Research, 2020, 38(4): 561-570] DOI: 10.16089/j.cnki.1008-2786.000534
[7] 刘栋梁, 李海兵, 潘家伟, 等. 帕米尔东北缘-西昆仑的构造地貌及其构造意义[J]. 岩石学报, 2011, 27(11): 3499-3512. [LIU Dongliang, LI Haibing, PAN Jiawei, et al. Morphotectonic study from the northeastern margin of the Pamir to the West Kunlun range and its tectonic implications [J]. Acta Petrologica Sinica, 2011, 27(11): 3499-3512]
[8] YUAN Z, CHEN J, OWEN L A, et al. Nature and timing of large landslides within an active orogen, eastern Pamir, China [J]. Geomorphology, 2013, 182: 49-65. DOI: 10.1016/j.geomorph.2012.10.028
[9] 陈钱, 吴和秋, 张明, 等. 新疆塔县地震触发顺向坡失稳破坏机理研究[J]. 安全与环境工程, 2021, 28(5): 88-95. [CHEN Qian, WU Heqiu, ZHANG Ming, et al. Research on the mechanism of earthquake-triggered failure of bedding slope in Taxian of Xinjiang [J]. Safety and Environmental Engineering, 2021, 28(5): 88-95] DOI: 10.13578/j.cnki.issn.1671-1556.20201041
[10] 陈剑, 崔之久, 陈瑞琛, 等. 金沙江上游特米古滑坡堰塞湖成因与演化[J]. 地学前缘, 2021, 28(2): 85-93. [CHEN Jian, CUI Zhijiu, CHEN Ruichen, et al. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River [J]. Earth Science Frontiers, 2021, 28(2): 85-93] DOI: 10.13745/j.esf.sf.2020.9.9
[11] 李文巧, 陈杰, 袁兆德, 等. 帕米尔高原1895年塔什库尔干地震地表多段同震破裂与发震构造[J]. 地震地质, 2011, 33(2): 260-276. [LI Wenqiao, CHEN Jie, YUAN Zhaode, et al. Coseismic surface ruptures of multi segments ans sismogenic fault of the Tashkorgan earthquake in Pamir, 1895 [J]. Seismology and Geology, 2011, 33(2): 260-276] DOI: 10.3969/j.issn.0253-4967.2011.02.002
[12] 刘健, 史杰, 姚鑫, 等. 帕米尔高原东北缘活动构造对塔什库尔干盆地地热控制作用[J]. 中国地质, 2018, 45(4): 681-692. [LIU Jian, SHI Jie, YAO Xin, et al. The control of neo-tectonic activity over geothermal resource in the Taxkorgan Basin on the northeastern margin of the Pamir [J]. Geology of China, 2018, 45(4): 681-692] DOI: 10.12029/gc20180403
[13] CAROSI R. Extension in a multilayer sequence along the Karakoram fault [J]. Journal of Structural Geology, 2010,33(6): 1045. DOI: 10.1016/j.jsg.2010.04.010
[14] SOBEL E R, SCHOENBOHM L M, CHEN J, et al. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis [J]. Earth and Planetary Science Letters, 2011, 304(3-4): 369-378. DOI: 10.1016/j.epsl.2011.02.012
[15] ROBINSON A C, YIN A, MANNING C E, et al. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen [J]. Geological Society of America Bulletin, 2007, 119(7-8): 882-896. DOI: 10.1130/B25981.1
[16] AIZEN E M, AIZEN V B, MELACK J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia [J]. International Journal of Climatology, 2001, 21(5): 535-556. DOI: 10.1002/joc.626
[17] WAKE C P. Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow accumulation in the central Karakoram, northern Pakistan [J]. Annals of Glaciology, 1989,13: 279-284.
[18] OWEN L A, FINKEL R C, BARNARD P L, et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating [J]. Quaternary Science Reviews, 2005, 24(12-13): 1391-1411. DOI: 10.1016/j.quascirev.2004.10.014
[19] 王帅, 王深法, 俞建强. 构造活动与地质灾害的相关性——浙西南山地滑坡、崩塌、泥石流的分布规律[J]. 山地学报, 2002, 20(1): 47-52. [WANG Shuai, WANG Shenfa, YU Jianqiang. A study on the relationships between neotectonism and geological hazards [J]. Mountain Research, 2002, 20(1): 47-52] DOI: 10.3969/j.issn.1008-2786.2002.01.008
[20] 侯伟. 基于遥感与DEM的面向对象滑坡识别研究[D]. 兰州: 兰州大学, 2014. [HOU Wei. Object-oriented identitying landslides using remote sensing and DEM data [D]. Lanzhou: Lanzhou University, 2014]
[21] LARSEN I J, MONTGOMERY D R, KORUP O. Landslide erosion controlled by hillslope material [J]. Nature Geoscience, 2010, 3(4): 247-251. DOI: 10.1038/NGEO776
[22] 聂高众, 高建国, 邓砚. 地震诱发的堰塞湖初步研究[J]. 第四纪研究, 2004, 24(3): 293-301. [NIE Gaozhong, GAO Jianguo, DENG Yan. Preliminary study on earthquake-induced dammed lake [J]. Quaternary Sciences, 2004, 24(3): 293-301] DOI: 10.3321/j.issn:1001-7410.2004.03.008
[23] 王兰生, 杨立铮, 王小群, 等. 岷江叠溪古堰塞湖的发现[J]. 成都理工大学学报(自然科学版), 2005,32(1): 1-11. [WANG Lansheng, YANG Lizheng, WANG Xiaoqun, et al. Discovery of huge ancient dammed lake on upstream of Minjiang River in Sichuan, China [J]. Journal of Chengdu University of Technology(Science and Technonogy Edition), 2005, 32(1): 1-11]
[24] CENDERELLI D A. Floods from natural and artificial dam failures [G]// WOHL E E. Inland Flood Hazards. Cambridge: Cambridge University Press, 2000: 73-103.
[25] LARSEN I J, MONTGOMERY D R. Landslide erosion coupled to tectonics and river incision [J]. Nature Geoscience, 2012, 5(7): 468-473. DOI: 10.1038/NGEO1479
[26] MONTGOMERY D R, BRANDON M T. Topographic controls on erosion rates in tectonically active mountain ranges [J]. Earth and Planetary Science Letters, 2002, 201(3-4): 481-489. DOI: 10.1016/S0012-821X(02)00725-2
[27] BURBANK D W, LELAND J, FIELDING E, et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas [J]. Nature, 1996, 379(6565): 505-510. DOI: 10.1038/379505a0
[28] EGHOLM D L, KNUDSEN M F, SANDIFORD M. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers [J]. Nature, 2013, 498(7455): 475-478. DOI: 10.1038/nature12218
[29] YANITES B J, TUCKER G E, MUELLER K J, et al. How rivers react to large earthquakes: Evidence from central Taiwan [J]. Geology, 2010, 38(7): 639-642. DOI: 10.1130/G30883.1
[30] WHIPPLE K X, FORTE A M, DIBIASE R A, et al. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution [J]. Journal of Geophysical Research-Earth Surface, 2017, 122(1): 248-273. DOI: 10.1002/2016JF003973
[31] DAHLQUIST M P, WEST A J, LI G. Landslide-driven drainage divide migration [J]. Geology, 2018, 46(5): 403-406. DOI: 10.1130/G39916.1
[32] KIRBY E, WHIPPLE K. Quantifying differential rock-uplift rates via stream profile analysis [J]. Geology, 2001, 29(5): 415-418. DOI: 10.1130/0091-7613(2001)029<0415:Qdrurv>2.0.Co; 2
[33] WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens [J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 151-185. DOI: 10.1146/annurev.earth.32.101802.120356
[34] AMBILI V, NARAYANA A C. Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India [J]. Geomorphology, 2014, 217: 37-47. DOI: 10.1016/j.geomorph.2014.04.013
[35] TRAUERSTEIN M, NORTON K P, PREUSSER F, et al. Climatic imprint on landscape morphology in the western escarpment of the Andes [J]. Geomorphology, 2013, 194: 76-83. DOI: 10.1016/j.geomorph.2013.04.015
[36] KORUP O. Rock-slope failure and the river long profile [J]. Geology, 2006, 34(1): 45-48. DOI: 10.1130/G21959.1
[37] TAKAHASHI N, SHYU J B H, CHEN C Y, et al. Long-term uplift pattern recorded by rivers across contrasting lithology: Insights into earthquake recurrence in the epicentral area of the 2016 Kumamoto earthquake, Japan [J]. Geomorphology, 2022, 419: 108492. DOI: 10.1016/j.geomorph.2022.108492
[38] WANG Yizhou, ZHENG Dewen, ZHANG Huiping. The methods and program implementation for river longitudinal profile analysis: RiverProAnalysis, a set of open-source functions based on the Matlab platform [J]. Science China-Earth Sciences, 2022, 65(9): 1788-1809. DOI: 10.1007/s11430-021-9938-x
[39] 李滨, 殷跃平, 吴树仁, 等. 多级旋转黄土滑坡基本类型及特征分析[J]. 工程地质学报, 2011,19(5):703-711. [LI Bin, YIN Yueping, WU Shuren, et al. Basic types and characteristics of multiple rotational landslides in loess [J]. Journal of Engineering Geology, 2011, 19(5): 703-711] DOI: 10.3969/j.issn.1004-9665.2011.05.010
[40] CHEVALIER M L, LI H B, PAN J W, et al. Fast slip-rate along the northern end of the Karakorum fault system, western Tibet [J]. Geophysical Research Letters, 2011, 38(22): L22309. DOI: 10.1029/2011GL049921
[41] 李文巧. 帕米尔高原东北部塔什库尔干谷地的活动构造与强震[D]. 北京: 中国地震局地质研究所, 2013. [LI Wenqiao. Active tectonics and strong earthquakes in the Tarshkurgan valley, northeastern Pamir Plateau [D]. Beijing: Institute of Geology, China Earthquake Administration, 2013]
[42] 沈军, 柏美祥, 石广岭. 新疆及邻区地震构造图简介[J]. 内陆地震, 2011, 25(2): 97-108. [SHEN Jun, BAI Meixiang, SHI Guangling. Brief introduction on the seismotectonic map of Xinjiang and its neighborhood [J]. Inland Earthquake, 2011, 25(2): 97-108] DOI: 10.3969/j.issn.1001-8956.2011.02.001
[43] 尹光华. 塔什库尔县发现三期地震遗迹[J]. 内陆地震, 1990(1): 26. [YIN Guanghua. Three phase earthquake remains found in Tashkur county [J]. Inland Earthquake, 1990(1): 26]
[44] 李海兵, VALLI F, 许志琴, 等. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 2006, 33(2): 239-255. [LI Haibing, VALLI F, XU Zhiqin, et al. Deformation and tectonic evolution of the Karakorum fault, western Tibet [J]. Geology in China, 2006, 33(2): 239-255]
[45] 戴新刚, 任宜勇, 陈洪武. 近50年新疆温度降水配置演变及其尺度特征[J]. 气象学报, 2007, 65(6):1003-1010. [DAI Xingang, REN Yiyong, CHEN Hongwu. Multi-scale feature of cliamte and cliamtes shifts in Xinjiang over the past 50 years [J]. Acta Meteorologica Sinica, 2007, 65(6): 1003-1010] DOI: 10.3321/j.issn:0577-6619.2007.06.018
[46] 杨舵, 史玉光. 新疆春季降水与北大西洋海温关系的事实分析[J]. 应用气象学报, 2002, 13(4):478-484. [YANG Duo, SHI Yuguang. A preliminary research on relationship between precipitation in spring in xinjiang and ssta in northern atlantic [J]. Journal of Applied Meteorolgical Science, 2002, 13(4): 478-484] DOI: 10.3969/j.issn.1001-7313.2002.04.011
[47] HAO Q Z, WANG L, OLDFIELD F, et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability [J]. Nature, 2012, 490(7420): 393-396. DOI: 10.1038/nature11493
[48] LIU Jian, WANG Rujian, ZHAO Yue, et al. A 40,000-year record of aridity and dust activity at Lop Nur, Tarim Basin, northwestern China [J]. Quaternary Science Reviews, 2019, 211: 208-221. DOI: 10.1016/j.quascirev.2019.03.023
[49] LIU Weiguo, LIU Zhonghui, SUN Jimin, et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition [J]. Geology, 2020, 48(8): 782-786. DOI: 10.1130/G47406.1
[50] 李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15): 1569-1574. [LI Jijun, FANG Xiaoming. Study on the uplift of Qinghai-Tibet plateau and environmental change [J]. Chinese Science Bulletin, 1998, 43(15): 1569-1574]
[51] SUN Jimin, LIU Weiguo, LIU Zhonghui, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200. DOI: 10.1016/j.palaeo.2017.06.012
[52] 焦克勤, 姚檀栋, 李世杰. 西昆仑山32ka来的冰川与环境演变[J]. 冰川冻土, 2000, 22(3): 250-256. [JIAO Keqin, YAO Tandong, LI Shijie. Evolution of glaciers and environment in the west Kunlun Mountains during the past 32 ka [J]. Journal of Glaciology and Geocryology, 2000, 22(3): 250-256]
[53] 何毅. 俄罗斯亚速海地区与中国帕米尔地区MIS5以来黄土磁性特征及环境演变研究[D]. 兰州: 兰州大学, 2016. [HE Yi. The loess research on magnetic characteristics and environmental evolution in Azov region of Russia and Pamir region of China since MIS5 [D]. Lanzhou: Lanzhou University, 2016]
[54] 钟巍, 王立国, 熊黑钢, 等. 塔里木盆地南缘和田绿洲中全新世以来气候环境变化与人类活动[J]. 中国沙漠, 2007, 27(2): 171-176. [ZHONG Wei, WANG Liguo, XIONG Heigang, et al. Climate-environment changes and possible human activity effect since Mid-Holocene in Hetian Oasis, southern margin of Tarim Basin [J]. Journal of Desert Research, 2007, 27(2): 171-176] DOI: 10.3321/j.issn:1000-694X.2007.02.001
[55] 柴贺军, 刘汉超, 张倬元. 中国堵江滑坡发育分布特征[J]. 山地学报, 2000, 18(S1): 51-54. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The temporal-soatial distribution of damming landsildes in China [J]. Mountain Research, 2000, 18(S1): 51-54] DOI: 10.16089/j.cnki.1008-2786.2000.s1.011
[56] GABET E J, BURBANK D W, PUTKONEN J K, et al. Rainfall thresholds for landsliding in the Himalayas of Nepal [J]. Geomorphology, 2004, 63(3-4): 131-143. DOI: 10.1016/j.geomorph.2004.03.011
[57] LIU Weiming, HU Kaiheng, CARLING P A, et al. The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangtze River, southeastern margin of the Tibetan Plateau [J]. Geomorphology, 2018, 321(15): 167-173. DOI: 10.1016/j.geomorph.2018.08.028
[58] PARKER R N, DENSMORE A L, ROSSER N J, et al. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth [J]. Nature Geoscience, 2011, 4(7): 449-452. DOI: 10.1038/NGEO1154
[59] CRUDEN D M. Some forms of mountain peaks in the Canadian Rockies controlled by their rock structure [J]. Quaternary International, 2000, 68-71: 59-65. DOI: 10.1016/S1040-6182(00)00032-X
[60] LIANG Lianji, ZHANG Zhourui, DAI Fuchu. A Late Pleistocene landslide damming event and its implications for the evolution of river valley landforms in the upper Jinsha River, southeastern Tibetan Plateau [J]. Quaternary International, 2022, 622: 97-109. DOI: 10.1016/j.quaint.2022.01.006
[61] WANG Hao, CUI Peng, ZHOU Liqin, et al. Spatial and temporal distribution of landslide-dammed lakes in Purlung Tsangpo [J]. Engineering Geology, 2022, 308: 106802. DOI: 10.1016/j.enggeo.2022.106802

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-12-13; 改回日期(Accepted date): 2023-02-24
基金项目(Foundation item): 第二次青藏高原综合科学考察项目(2019QZKK0707); 中国科学院战略先导专项(XDB40010100)。[The Second Tibetan Plateau Scientific Expedition Program(2019QZKK0707); The Strategic Priority Research Program of Chinese Academy of Sciences(XDB40010100)]
作者简介(Biography): 邓丽(1998-),女,四川南充人,硕士研究生,主要研究方向:第四纪地质与全球变化。[DENG Li(1998-), female, born in Nanchong, Sichuan province, M. Sc. candidate, research on quaternary geology and global change] E-mail: dengli2020@ieecas.cn
*通讯作者(Corresponding author): 常宏(1970-),男,博士,研究员,主要研究方向:第四纪地质与全球变化。[CHANG Hong(1970-), male, Ph.D., professor, research on quaternary geology and global change] E-mail: changh@loess.llqg.ac.cn

更新日期/Last Update: 2023-01-30