[1]梁 志,师 宇,丁伟宸,等.山地地形下激光雷达风速的精度验证与模拟[J].山地学报,2022,(2):317-328.[doi:10.16089/j.cnki.1008-2786.000674]
 LIANG Zhi,SHI Yu,DING Weichen,et al.Verification of LiDAR Accuracy and Wind Simulation under Mountainous Terrain[J].Mountain Research,2022,(2):317-328.[doi:10.16089/j.cnki.1008-2786.000674]
点击复制

山地地形下激光雷达风速的精度验证与模拟
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第2期
页码:
317-328
栏目:
山地技术
出版日期:
2022-03-25

文章信息/Info

Title:
Verification of LiDAR Accuracy and Wind Simulation under Mountainous Terrain
文章编号:
1008-2786-(2022)2-317-12
作者:
梁 志12师 宇1丁伟宸12胡 非12*
1.中国科学院大气物理研究所,北京 100029; 2.中国科学院大学,北京 100049
Author(s):
LIANG Zhi12SHI Yu1DING Weichen12 HU Fei12*
1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
激光雷达 山地地形 精度验证 计算流体力学
Keywords:
LiDAR mountainous terrain accuracy verification Computational Fluid Dynamics(CFD)
分类号:
P412.16; O355
DOI:
10.16089/j.cnki.1008-2786.000674
文献标志码:
A
摘要:
山地地形的边界层风场与平坦地形有显著不同,其空间分布具有独特的特征。山地地形下风场的精细测量对气象预报、风能利用和环境保护等相关领域均非常重要。激光雷达因可移动和便捷性在山地地形下广泛使用,但山地复杂的风场状况会降低激光雷达对风速的测量精度。本文选取风速加速显著的山脊地形作为观测场地,评估了激光雷达在山地地形的风速测量误差,提出了基于计算流体力学数值模拟的风速误差评估方法,解释了地形对风速误差的产生机制。结果表明:(1)激光雷达实测的风速误差随着地形变化呈现显著对应的规律变化,地形坡度最大时误差达到最大值,激光雷达对风速有17.8%的低估;(2)不同激光束的结果表明风速低估是由于风场在空间上的差异造成的;(3)数值模拟的评估结果与实际观测结论一致,山地地形造成了风场的空间差异,通过激光雷达的风速反演算法产生计算误差。本文结论可以指导激光雷达在山地地形下的正确使用,对山地地形下激光雷达的风速误差修正有很好的参考价值。
Abstract:
In mountainous terrain, the spatial distributions of wind flow in Atmospheric Boundary Layer(ABL)are significantly distinct from those of wind flow in flat terrain. Accurate wind measurement in mountainous terrain is playing a crucial role in wind-related disciplines, such as meteorological forecasting, wind energy and environmental protection. In recent years, LiDAR(Light Detection and Ranging)has become an important tool for wind measurement in mountainous terrain due to their great benefits in mobility and flexibility. However, the accuracy of LiDAR is compromised due to the complexity of wind flow in mountainous terrain. In this study, one ridge was selected as our targeted test site for its significant wind acceleration effect, and LiDAR error of wind speed measurement was analyzed under different terrains. One method to evaluating LiDAR error by the numerical simulation of Computational Fluid Dynamics(CFD)was proposed and demonstrated a possible mechanism of how the error was generated by the terrain. The results showed:(1)The LiDAR error of wind speed showed a significant correlation with the slope of the terrain and it reached a maximum when the terrain slope was the largest, with a 17.8% underestimation of the wind speed;(2)The analysis of RWS(Radial Wind Speed)at different laser beams showed that wind speed underestimation was due to spatial differences in wind fields;(3)The distribution pattern of LiDAR error assessed by CFD numerical simulation was consistent with the observation result, and the numerical simulation indicated that the mountainous terrain caused spatial differences of the wind field, and the error was generated by LiDAR Wind Field Reconstruction(WFR). The conclusion of this paper could guide the proper use of LiDAR in mountainous terrain, and was a valuable reference for LiDAR error correction of wind speed.

参考文献/References:

[1] 万蓉凤,修春波,卢少磊. 基于ZigBee技术的风速测量系统的设计[J]. 中南大学学报(自然科学版),2013,44(Suppl.1): 162-165. [WAN Rongfeng, XIU Chunbo, LU Shaolei. Design of wind speed measurement system based on ZigBee wireless communication technology [J]. Journal of Central South University(Science and Technology), 2013, 44(Suppl.1): 162-165] DOI: 10.16089/j.cnki.1008-2786.000528
[2] 马晓梅,王博,刘永前. 一种基于大气稳定度的风资源评估方法[J]. 可再生能源,2020,38(1): 47-52. [MA Xiaomei, WANG Bo, LIU Yongqian. A wind resource assessment method based on atmospheric stability [J]. Renewable Energy Resources, 2020, 38(1): 47-52] DOI: 10.13941/j.cnki.21-1469/tk.2020.01.009
[3] 付建新,曹广超,郭文炯. 祁连山区风速和风向时空变化特征[J]. 山地学报,2020,38(4): 495-506. [FU Jianxin, CAO Guangchao, GUO Wenjiong. Temporal and spatial variation characteristics of average wind speed and direction in the Qilian Mountains,China [J]. Mountain Research, 2020, 38(4): 495-506] DOI: 10.16089/j.cnki.1008-2786.000528
[4] 盛裴轩,毛节泰,李建国,等. 大气物理学[M]. 北京: 北京大学出版社,2013: 278-279. [SHENG Peixuan, MAO Jietai, LI Jianguo. Atmospheric physics [M]. Beijing: Peking University Press, 2013: 278-279]
[5] 高阳华,张跃,陈志军,等. 山区风能资源与开发[J]. 山地学报,2008,26(2): 10-27. [GAO Yanghua, ZHANG Yue, CHEN Zhijun, et al. Wind energy resources and exploitation in mountainous area [J]. Mountain Research, 2008, 26(2): 10-27] DOI: 10.3969/j.issn.1008-2786.2008.02.007
[6] 赵鸣. 大气边界层动力学[M]. 北京: 高等教育出版社,2006: 223-224. [ZHAO Ming. Dynamics of atmospheric boundary layer [M]. Beijing: Higher Education Press, 2006: 223-224]
[7] HARVEY N J, HOGAN R J, DACRE H F. A method to diagnose boundary-layer type using Doppler lidar [J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(676): 1681-1693. DOI: 10.1002/qj.2068
[8] 傅军,李洁,吴强. 激光测风雷达在风场观测领域的应用及展望[J]. 空气动力学学报,2021,39(4): 172-179. [FU Jun, LI Jie, WU Qiang. Application and prospect of Dopplar lidar in the wind field observation [J]. Acta Aerodynamica Sinica, 2021, 39(4): 172-179] DOI: 10.7638/kqdlxxb-2021.0060
[9] PICHUGINA Y L, BANTA R M, BREWER W A, et al. Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications [J]. Journal of Applied Meteorology and Climatology, 2012, 51(2): 327-349. DOI: 10.1175/JAMC-D-11-040.1
[10] EMEIS S. Current issues in wind energy meteorology [J]. Meteorological Applications, 2014, 21(4): 803-819. DOI: 10.1002/met.1472
[11] BRADLEY S, STREHZ A, EMEIS S. Remote sensing winds in complex terrain — a review [J]. Meteorologische Zeitschrift, 2015, 24(6): 547-555. DOI: 10.1127/metz/2015/0640
[12] PORTÉ-AGEL F, BASTANKHAH M, SHAMSODDIN S. Wind-turbine and wind-farm flows: A review [J]. Boundary-Layer Meteorology, 2020, 174(1): 1-59. DOI: 10.1007/s10546-019-00473-0
[13] 李磊,张立杰,张宁,等. FLUENT在复杂地形风场精细模拟中的应用研究[J]. 高原气象,2010,29(3): 1-8. [LI Lei, ZHANG Lijie, ZHANG Ning, et al. Application of FLUENT on the fine-scale simulation of the wind field over complex terrain [J]. Plateau Meteorology, 2010, 29(3): 1-8] DOI: 10.1017/CBO9781107415324.004
[14] 李磊,胡非,刘京. CFD技术在我国城市气候环境微尺度问题中的应用[J]. 气象科技进展,2015,5(6): 23-30. [LI Lei, HU Fei, LIU Jing. Application of CFD technique on micro-scale issues in urban climatic environment researches in China [J]. Advances in Meteorological Science and Technology, 2015, 5(6): 23-30] DOI: 10.3969/j.issn.2095-1973.2015.06.004
[15] 叶昭良,闫姝,史绍平,等. 基于Openfoam的怀来复杂地形风电场流动特性研究[J]. 可再生能源,2020,38(4): 471-476. [YE Zhaoliang, YAN Shu, SHI Shaoping, et al. Research on Huailai complex wind farm terrain flow characteristics based on Openfoam [J]. Renewable Energy Resources, 2020, 38(4): 471-476] DOI: 10.3969/j.issn.1671-5292.2020.04.008
[16] 赵子涵,李朝,肖仪清,等. 基于NWP/CFD嵌套的复杂地形风场模拟研究[J]. 太阳能学报,2021,42(2):205-211. [ZHAO Zihan, LI Chao, XIAO Yiqing, et al. Wind field simulation over complex terrain by coupling NWP/CFD approach [J]. Acta Energiae Solaris Sinica, 2021, 42(2):205-211] DOI: 10.19912/j.0254-0096.tynxb.2018-1134
[17] 肖仪清,李朝,欧进萍,等. 复杂地形风能评估的CFD方法[J]. 华南理工大学学报(自然科学版),2009,37(9): 30-35. [XIAO Yiqing, LI Chao,OU Jinping, te al. CFD approach to evaluation of wind energy in complex terrain [J]. Journal of South China University of Technology(Natural Science Edition), 2009, 37(9): 30-35] DOI: 10.3321/j.issn:1000-565X.2009.09.006
[18] 李军,胡非. 复杂地形下激光雷达测风误差的修正[J]. 可再生能源,2017,35(5): 727-733. [LI Jun, HU Fei. Correction for LiDAR measured error of wind flow on complex terrain [J]. Renewable Energy Resources, 2017, 35(5): 727-733] DOI: 10.13941/j.cnki.21-1469/tk.2017.05.015
[19] PARENTE A, GORLÉ C, VAN BEECK J, et al. A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model [J]. Boundary-Layer Meteorology, 2011, 140(3): 411-428. DOI: 10.1007/s10546-011-9621-5
[20] 李军,胡非,程雪玲,等. CFD在复杂地形风能开发中的应用研究[J]. 太阳能学报,2013,34(7): 1250-1256. [LI Jun, HU Fei, CHENG Xueling, et al. Application of CFD on the simulation of the wind energy over complex terrain [J]. Acta Energiae Solaris Sinica, 2013, 34(7): 1250-1256] DOI: 10.3969/j.issn.0254-0096.2013.07.023
[21] NEWMAN J F, KLEIN P M, WHARTON S, et al. Evaluation of three lidar scanning strategies for turbulence measurements [J]. Atmospheric Measurement Techniques, 2016, 9(5): 1993-2013. DOI: 10.5194/amt-9-1993-2016
[22] BONIN T A, CHOUKULKAR A, BREWER W A, et al. Evaluation of turbulence measurement techniques from a single Doppler lidar [J]. Atmospheric Measurement Techniques, 2017, 10(8): 3021-3039. DOI: 10.5194/amt-10-3021-2017
[23] SATHE A, MANN J. A review of turbulence measurements using ground-based wind lidars [J]. Atmospheric Measurement Techniques, 2013, 6(11): 3147-3167. DOI: 10.5194/amt-6-3147-2013
[24] KLAAS T, PAUSCHER L, CALLIES D. LiDAR-mast deviations in complex terrain and their simulation using CFD [J]. Meteorologische Zeitschrift, 2015, 24(6): 591-603. DOI: 10.1127/metz/2015/0637
[25]程雪玲,胡非. 复杂地形网格生成研究[J]. 计算力学学报,2006,23(3): 313-316. [CHENG Xueling, HU Fei. The study of grid formation on complex terrain [J]. Chinese Journal of Computational Mechanics, 2006, 23(3): 313-316] DOI: 10.3969/j.issn.1007-4708.2006.03.011
[26] 程雪玲,胡非,曾庆存. 复杂地形风场的精细数值模拟[J]. 气候与环境研究,2015,20(1): 1-10. [CHENG Xueling, HU Fei, ZENG Qingcun. Refined numerical simulation of complex terrain flow field [J]. Climatic and Environmental Research, 2015, 20(1): 1-10] DOI: 10.3878/j.issn.1006-9585.2014.13225
[27] HOFSÄSS M, CLIFTON A, CHENG P W. Reducing the uncertainty of lidar measurements in complex terrain using a linear model approach [J]. Remote Sensing, 2018, 10(9):1465. DOI: 10.3390/rs10091465

相似文献/References:

[1]陈楚江,余绍淮,王丽园,等.雪崩灾害的遥感量化分析与工程选线[J].山地学报,2009,(01):63.
[2]任兰红,曾 坚*,曾穗平.山地地形对鼓浪屿历史文化街区风荷载作用效应研究[J].山地学报,2019,(01):41.[doi:10.16089/j.cnki.1008-2786.000397]
 REN Lanhong,ZENG Jian*,ZENG Suiping.Wind Load of Kulangsu Historical and Cultural District Effected by Hilly Terrain[J].Mountain Research,2019,(2):41.[doi:10.16089/j.cnki.1008-2786.000397]

备注/Memo

备注/Memo:
收稿日期(Received date):2022-01-29; 改回日期( Accepted date):2022-04-06
基金项目(Foundation item):国家自然科学基金青年项目(42105093); 国家自然科学基金(41975018)。[National Natural Science Foundation of China(Grant 42105093); National Natural Science Foundation of China(Grant 41975018)]
作者简介(Biography):梁志(1985-),男,博士研究生,主要研究方向:复杂地形边界层结构和湍流理论。[LIANG Zhi(1985-), male, Ph.D. candidate, research on boundary layer structure on complex terrain and turbulence theory] E-mail: li-angzhi18@mails.ucas.ac.cn
*通讯作者(Corresponding author):胡非(1962-),男,博士,研究员,主要研究方向:大气边界层湍流。[HU Fei(1962-), male, Ph.D., professor, research on atmospheric boundary layer turbulence] E-mail: hufei@mail.iap.ac.cn
更新日期/Last Update: 2022-03-30