[1]杜常江,陈 飞,李法虎*,等.基于能量守恒和3S技术的分布式冰川融水径流过程模拟[J].山地学报,2021,(2):290-303.[doi:10.16089/j.cnki.1008-2786.000595]
 DU Changjiang,CHEN Fei,LI Fahu*,et al.A Distributed Simulation Model on Runoff Process from Glacial Meltwater Based on Energy Conservation and 3S Technology[J].Mountain Research,2021,(2):290-303.[doi:10.16089/j.cnki.1008-2786.000595]
点击复制

基于能量守恒和3S技术的分布式冰川融水径流过程模拟()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第2期
页码:
290-303
栏目:
山地技术
出版日期:
2021-03-25

文章信息/Info

Title:
A Distributed Simulation Model on Runoff Process from Glacial Meltwater Based on Energy Conservation and 3S Technology
文章编号:
1008-2786-(2021)2-290-14
作者:
杜常江陈 飞李法虎*雷廷武
中国农业大学 水利与土木工程学院,北京 100083
Author(s):
DU Changjiang CHEN Fei LI Fahu* TANG Liping
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
关键词:
冰川融水 分布式模型 机理模型 融水径流 径流过程
Keywords:
glacial meltwater distributed model mechanism model meltwater runoff runoff process
分类号:
P333.1; P338+.1; P343.6+2
DOI:
10.16089/j.cnki.1008-2786.000595
文献标志码:
A
摘要:
面向对象的分布式冰川融水径流模型的建立,不仅可以提高模拟计算的精度,而且可清楚地反映冰川融水径流各影响因子的特征,对研究中国西部地区流域水文循环具有重要意义。本研究借助3S技术,根据能量守恒和水量平衡原理,建立了包括栅格冰川融水、融水产流以及汇流子系统且具有严格物理意义的分布式冰川融水径流过程模型。通过DEM数字高程技术,提取流域地理信息; 基于Landsat-7卫星遥感影像,反演获得流域的冰川覆盖信息和地表反射率信息。将获取的这些信息作为冰川融水径流过程模型的基本输入数据,分别对扎当冰川和七一冰川融水的日径流过程进行了模拟计算。结果显示,该模型对2个冰川径流量日变化过程的模拟结果与实测过程一致。2个冰川的日径流峰值与其实测值的差异小于6.0%,日径流过程的Nash-Sutcliffe效率系数均大于0.81。所建模型计算结果可靠,可以为实时预测冰川融水径流变化过程提供技术支撑。
Abstract:
To establish an object-oriented distributed glacier meltwater runoff model can not only improve the accuracy of simulation calculation, but also clearly reflect the influence characteristics of its each influencing factor, which is of great significance for the study of hydrological cycle in western China. Based on the principles of energy conservation and water balance, a distributed process model of glacier meltwater runoff, including grid glacier melting, runoff generation, and runoff confluence subsystems, with strict physical significance was established with the help of 3 S(Remote Sensing, Geography Information System, and Global Positioning System)technologies. The glacier melting subsystem was based on the energy conservation principle near ground surface, the runoff generation subsystem was on regional water mass balance, and the runoff confluence subsystem was based on variable isochronous line convergence method. By means of DEM(Digital Elevation Model)digital elevation technology, the geographic information of the studied watershed was extracted. The glacier coverage information and surface reflectance information of the watershed were obtained by inversion method based on Landsat-7 satellite remote sensing images. The acquired information was used as the basic input data of the established model of glacier meltwater runoff process, and the variation processes of daily runoff with time from the Zhadang Glacier and the Qiyi Glacier were simulated and calculated, respectively. The simulation results showed that the diurnal variation processes of glacier meltwater runoff with time calculated by the established model were consistent with their measured processes for the two studied glaciers. The diurnal change process of the meltwater runoff with time was closely related to air temperature, and the change process of the runoff lagged behind that of the temperature by about 2~4 h. The difference between the calculated daily runoff peak value and its measured value was smaller than 6.0%, and the Nash-Sutcliffe efficiency coefficient of daily runoff process was greater than 0.81 for both the glaciers. It can be concluded that the established distributed model of glacier meltwater runoff process is reliable, which provides a technical support for the real-time prediction of runoff process from glacial meltwater. Some necessary simplifications, such as the nature of ice and snow(new and old, pollution, surface cracking, etc.)and the local generalization treatment of near-surface heat exchange and transfer, were introduced in the development of mathematical sub-models in this study, and their more reasonable expressions require further in-depth study.

参考文献/References:

[1] HOCK R. Glacier melt: A review of processes and their modelling [J]. Progress in Physical Geography, 2005, 29(3): 362-391. DOI: 10.1191/0309133305pp453ra
[2] SORG A, BOLCH T, STOFFEL M, et al. Climate change impacts on glaciers and runoff in Tien Shan(Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731. DOI: 10.1038/NCLIMATE1592
[3] 施雅风,刘潮海,王宗太,等. 简明中国冰川编目[M].上海:上海科学普及出版社,2005:1-36. [SHI Yafeng, LIU Chaohai, WANG Zongtai, et al. Concise glacier inventory of China [M]. Shanghai: Shanghai Popular Science Press, 2005: 1-36]
[4] FRENIERRE J L, MARK B G. A review of methods for estimating the contribution of glacial meltwater to total watershed discharge [J]. Progress in Physical Geography, 2014, 38(2):173-200. DOI: 10.1177/0309133313516161
[5] HOINKES H, STEINACKER R. Hydrometeorological implications of the mass balance of Hintereisferner, 1952-53 to 1968-69 [J]. IAHS-AISH Publication, 1975, 104: 144-149.
[6] 刘时银,丁永建,叶佰生.度日因子用于乌鲁木齐河源1号冰川物质平衡计算的研究[G]//中国地理学会冰川冻土分会,第五届全国冰川冻土学大会论文集(上册). 兰州:甘肃文化出版社,1996: 197-204. [LIU Shiyin, DING Yongjian, YE Baisheng. Study on the mass balance of the Glacier No. 1 at the headwaters of the Urumqi River using degree-day method [G]// Glacial and Permafrost Branch of Chinese Geographical Society, Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology(Volume 1). Lanzhou: Gansu Culture Press, 1996: 197-204]
[7] 崔玉环,叶柏生,王杰,等.乌鲁木齐河源1号冰川度日因子时空变化特征[J]. 冰川冻土,2010, 32(2): 265-274. [CUI Yuhuan, YE Baisheng, WANG Jie, et al. Analysis of the spatial-temporal variations of the positive degree-day factors on the Glacier No. 1 at the headwaters of the Urumqi River [J]. Journal of Glaciology and Geocryology, 2010, 32(2): 265-274]
[8] HOCK R. Temperature index melt modelling in mountain areas [J]. Journal of Hydrology, 2003, 282(1-4): 104-115. DOI: 10.1016/S0022-1694(03)00257-9
[9] TEKELI A E, AKYUREK Z, ORMAN A A, et al. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey [J]. Remote Sensing of Environment, 2005, 97(2): 216-230. DOI: 10.1016/j.rse.2005.03.013
[10] 赵求东,刘志辉,房世峰,等.基于EOS/MODIS遥感数据改进式融雪模型 [J].干旱区地理,2007, 30(6): 915-920. [ZHAO Qiudong, LIU Zhihui, FANG Shifeng, et al. Improved snowmelt model based on EOS/MODIS remote sensing data [J]. Arid Land Geography, 2007, 30(6): 915-920] DOI: 10.13826/j.cnki.cn65-1103/x.2007.06.003
[11] ABBOTT M B, BATHURST J C, CUNGE J A, et al. An introduction to the European Hydrological System-Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system [J]. Journal of Hydrology, 1986, 87(1-2): 45-59. DOI: 10.1016/0022-1694(86)90114-9
[12] BATHURST J C, O'CONNELL P E. Future of distributed modelling: The Systeme Hydrologique Europeen [J]. Hydrological Processes, 1992, 6(3): 265-277. DOI: 10.1002/hyp.3360060304
[13] 房世峰,裴欢,刘志辉,等.遥感和GIS支持下的分布式融雪径流过程模拟研究[J].遥感学报,2008, 12(4): 655-662. [FANG Shifeng, PEI Huan, LIU Zhihui, et al. Study on the distributed snowmelt runoff process based on RS and GIS [J]. Journal of Remote Sensing, 2008, 12(4): 655-662] DOI: 10.3321/j.issn:1007-4619.2008.04.017
[14] DAVID O, ASCOUGH J C, LLOYD W, et al. A software engineering perspective on environmental modeling framework design: The object modeling system [J]. Environmental Modelling & Software, 2013, 39(1): 201-213. DOI: 10.1016/j.envsoft.2012.03.006
[15] 尹振良,冯起,刘时银,等.水文模型在估算冰川径流研究中的应用现状[J].冰川冻土,2016, 38(1): 248-258. [YIN Zhenliang, FENG Qi, LIU Shiyin, et al. The application progress of hydrological model in quantifying the contribution of glacier runoff to total watershed runoff [J]. Journal of Glaciology and Geocryology, 2016, 38(1): 248-258] DOI: 10.7522/j.isnn.1000-0240.2016.0028
[16] ARNOLD N S, WILLIS I C, SHARP M J, et al. A distributed surface energy-balance model for a small valley glacier. I. development and testing for Haut Glacier d'Arolla, Valais, Switzerland [J]. Journal of Glaciology, 1996, 42(140): 77-89. DOI: 10.1017/S0022143000030549
[17] GAO T, KANG S, KRAUSE P, et al. A test of J2000 model in a glacierized catchment in the central Tibetan Plateau [J]. Environmental Earth Sciences, 2012, 65(6): 1651-1659. DOI: 10.1007/s12665-011-1142-5
[18] 武小波,王宁练,李全莲.七一冰川消融末期融水化学日变化特征[J]. 冰川冻土,2009, 31(6): 1080-1085. [WU Xiaobo, WANG Ninglian, LI Quanlian. Diurnal variation of meltwater chemistry in the Qiyi Glacier during the late ablation period [J]. Journal of Glaciology and Geocryology, 2009, 31(6): 1080-1085]
[19] US Geological Survey. Landsat 7(L7)data users handbook(Version 2.0)[R]. Sioux Falls, South Dakota, 2018: 1-142.
[20] DUGUAY C R, LEDREW E F. Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain [J]. Photogrammetric Engineering & Remote Sensing, 1992, 58(5): 551-558. DOI: 10.1109/36.142950
[21] HALL D K, RIGGS G A, SALOMONSON V V, et al. MODIS snow-cover products [J]. Remote Sensing of Environment, 2002, 83(1/2): 181-194. DOI: 10.1016/S0034-4257(02)00095-0
[22] HALL D K, RIGGS G A, SALOMONSON V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data [J]. Remote Sensing of Environment, 1995, 54(2): 127-140. DOI: 10.1016/0034-4257(95)00137-P
[23] 陈飞,蔡强国,郑明国,等.纳木错流域冰雪消融特性研究及融水量估算[J]. 山地学报,2015, 33(4): 465-472. [CHEN Fei, CAI Qiangguo, ZHENG Mingguo, et al. Melting characteristics and ablation calculation in Nam Co basin [J]. Mountain Research, 2015, 33(4): 465-472] DOI: 10.16089/j.cnki.1008-2786.000058
[24] 宋高举,王宁练,陈亮,等.祁连山近期七一冰川融水径流特征分析[J].冰川冻土,2008, 30(2): 321-328. [SONG Gaoju, WANG Ninglian, CHEN Liang, et al. Analysis of the recent features of the meltwater runoff from the Qiyi Glacier, Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2008, 30(2): 321-328]
[25] HOCK R, HOLMGREN B. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden [J]. Journal of Glaciology, 2005, 51(172): 25-36. DOI: 10.3189/172756505781829566
[26] KONDO J, YAMAZAKI T. A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method [J]. Journal of Applied Meteorology and Climatology, 1990, 29(5): 375-384. DOI: 10.1175/1520-0450(1990)029<0375:APMFSS>2.0.CO; 2
[27] IZIOMON M G, MAYER H, MATZARAKIS A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(10): 1107-1116. DOI: 10.1016/j.jastp.2003.07.007
[28] JIANG X, WANG N, HE J, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China [J]. Chinese Science Bulletin, 2010, 55(20): 2079-2087. DOI: 10.1007/s11434-010-3068-9
[29] 余卫东,汤新海.气温日变化过程的模拟与订正[J].中国农业气象,2009, 30(1): 35-40. [YU Weidong, TANG Xinhai. Simulation and modification of daily variation of air temperature [J]. Chinese Journal of Agrometeorology, 2009, 30(1): 35-40]
[30] MARCUS M G, MOORE R D, OWENS I F. Short-term estimates of surface energy transfers and ablation on the lower Franz Josef Glacier, South Westland, New Zealand [J]. New Zealand Journal of Geology and Geophysics, 1985, 28(3): 559-567. DOI: 10.1080/00288306.1985.10421208
[31] V, MENOUNOS B, SHEA J, et al. Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada [J]. The Cryosphere, 2017, 11(6): 2897-2918. DOI: 10.5194/tc-11-2897-2017
[32] MALE D H, GRANGER R J. Snow surface energy exchange [J]. Water Resources Research, 1981, 17(3): 609-627. DOI: 10.1029/WR017i003p00609
[33] ANDREAS E L. Parameterizing scalar transfer over snow and ice: A review [J]. Journal of Hydrometeorology, 2002, 3(4): 417-432. DOI: 10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO; 2
[34] HOGG I G G, PAREN J G, TIMMIS R J. Summer heat and ice balances on Hodges glacier, south Georgia, Falkland Islands dependencies [J]. Journal of Glaciology, 1982, 28(99): 221-238. DOI: 10.1017/S0022143000011606
[35] ZEINIVAND H, DE SMEDT F. Prediction of snowmelt floods with a distributed hydrological model using a physical snow mass and energy balance approach [J]. Natural Hazards, 2010, 54(2): 451-468. DOI: 10.1007/s11069-009-9478-9
[36] GUSTAFSSON D, STÄHLI M, JANSSON P E. The surface energy balance of a snow cover: Comparing measurements to two different simulation models [J]. Theoretical and Applied Climatology, 2001, 70(1-4): 81-96. DOI: 10.1007/s007040170007
[37] HOGSTROM U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation [J]. Boundary-Layer Meteorology, 1988, 42(1-2): 55-78. DOI: 10.1007/BF00119875
[38] LUO Y, ARNOLD J, LIU S, et al. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China [J]. Journal of Hydrology, 2013, 447(1): 72-85. DOI: 10.1016/j.jhydrol.2012.11.005
[39] SAMANI Z. Estimating solar radiation and evapotranspiration using minimum climatological data [J]. Journal of Irrigation and Drainage Engineering, 2000, 126(4): 265-267. DOI: 10.1061/(ASCE)0733-9437(2000)126:4(265)
[40] 李丽.分布式水文模型的汇流演算研究[D].南京: 河海大学,2007: 1-12. [LI Li. Study on flood routing of distributed hydrologic models [D]. Nanjing: Hohai University, 2007: 1-12]
[41] FOUNTAIN A G, WALDER J S. Water flow through temperate glaciers [J]. Reviews of Geophysics, 1998, 36(3): 299-328. DOI: 10.1029/97RG03579
[42] FLOWERS G E, CLARKE G K C. An integrated modeling approach to understanding subglacial hydraulic release events [J]. Annals of Glaciology, 2000, 31(1): 222-228. DOI: 10.3189/172756400781820471
[43] 刘军志,朱阿兴,秦承志,等.分布式水文模型的并行计算研究进展[J].地理科学进展,2013, 32(4): 538-547. [LIU Junzhi, ZHU Axing, QIN Chengzhi, et al. Review on parallel computing of distributed hydrological models [J]. Progress in Geography, 2013, 32(4): 538-547] DOI: 10.11820/dlkxjz.2013.04.006
[44] 王纲胜,夏军,牛存稳.分布式水文模拟汇流方法及应用[J].地理研究,2004, 23(2): 175-182. [WANG Gangsheng, XIA Jun, NIU Cunwen. Flow routing method and its application in distributed hydrological modeling [J]. Geographical Research, 2004, 23(2): 175-182] DOI: 10.3321/j.issn:1000-0585.2004.02.005
[45] 张宽地.坡面径流水动力学特性及挟沙机理研究[D].杨凌:西北农林科技大学,2011: 19-61. [ZHANG Kuandi. Research on hydrodynamic characteristics of slope surface flow and sediment transport mechanisms [D]. Yangling: Northwest Agriculture and Forestry University, 2011: 19-61]
[46] POHL E, GLOAGUEN R, ANDERMANN C, et al. Glacier melt buffers river runoff in the Pamir mountains [J]. Water Resources Research, 2017, 53(3): 2467-2489. DOI: 10.1002/2016WR019431
[47] ZHOU S, KANG S, GAO T, et al. Response of Zhadang Glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form [J]. Chinese Science Bulletin, 2010, 55(20): 2103-2110. DOI: 10.1007/s11434-010-3290-5
[48] 吴倩如,康世昌,高坛光,等.青藏高原纳木错流域扎当冰川度日因子特征及其应用[J].冰川冻土,2010, 32(5): 891-897. [WU Qianrui, KANG Shichang, GAO Tanguang, et al. The characteristics of the positive degree-day factors of the Zhadang Glacier on the Nyainqêntanglha Range of Tibetan Plateau, and its application [J]. Journal of Glaciology and Geocryology, 2010, 32(5): 891-897]
[49] ZHANG Guoshuai, KANG Shichang, CUO Lan, et al. Modeling hydrological process in a glacier basin on the central Tibetan Plateau with a distributed hydrology soil vegetation model [J]. Journal of Geophysical Research: Atmospheres, 2016, 121: 9521-9539. DOI: 10.1002/2016JD025434
[50] GAO Tanguang, KANG Shichang, CUO Lan, et al. Simulation and analysis of glacier runoff and mass balance in the Nam Co Basin, southern Tibetan Plateau [J]. Journal of Glaciology, 2015, 61(227): 447-460. DOI: 10.3189/2015JoG14J170
[51] 蒋熹,王宁练,贺建桥,等.山地冰川表面分布式能量-物质平衡模型及其应用[J].科学通报,2010, 55(18): 1757-1765. [JIANG Xi, WANG Ninglian, HE Jianqiao, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China [J]. Chinese Science Bulletin, 2010, 55(18): 1757-1765] DOI: 10.1360/csb2010-55-18-1757

相似文献/References:

[1]陆 文,唐家良*,章熙锋,等.山地流域水文模拟研究进展与展望[J].山地学报,2020,(1):50.[doi:10.16089/j.cnki.1008-2786.000490]
 LU Wen,TANG Jialiang*,ZHANG Xifeng,et al.Hydrological Simulation in Mountainous Region: Present State and Perspectives[J].Mountain Research,2020,(2):50.[doi:10.16089/j.cnki.1008-2786.000490]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-11-03; 改回日期(Accepted date):2020-12-24
基金项目(Foundation item):国家重点研发计划课题(2018YFC0406604); 国家自然科学基金(41230746)。[National Key Research and Development Program of China(2018YFC0406604); National Natural Science Foundation of China(41230746)]
作者简介(Biography):杜常江(1990-),男,河南封丘人,硕士,主要研究方向:水土保持。[DU Changjiang(1990-), male, born in Zhengzhou, Henan province, M. Sc., research on soil and water conservation] Email: 573138919@qq.com
*通讯作者(Corresponding author):李法虎(1963-),男,河南新乡人,博士,教授,主要研究方向:水利工程。[LI Fahu(1963-), born in Xinxiang, Henan province, Ph.D., professor, research on water resources engineering] E-mail: lifahu@cau.edu.cn
更新日期/Last Update: 2021-03-30