[1]朱 钰,刘时银*,易 颖,等.“三江并流区”水储量的时空变化特征及其对ENSO的响应[J].山地学报,2020,(2):165-179.[doi:10.16089/j.cnki.1008-2786.000499]
 ZHU Yu,LIU Shiyin*,YI Ying,et al.Spatiotemporal Changes of Terrestrial Water Storage in Three Parallel River Basins and Its Response to ENSO[J].Mountain Research,2020,(2):165-179.[doi:10.16089/j.cnki.1008-2786.000499]
点击复制

“三江并流区”水储量的时空变化特征及其对ENSO的响应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第2期
页码:
165-179
栏目:
山地环境
出版日期:
2020-05-10

文章信息/Info

Title:
Spatiotemporal Changes of Terrestrial Water Storage in Three Parallel River Basins and Its Response to ENSO
文章编号:
1008-2786-(2020)2-165-15
作者:
朱 钰12刘时银12*易 颖12李婉秋3张思豆12
1.云南大学 国际河流与生态安全研究院,云南 昆明 650091; 2.云南省国际河流与跨境生态重点实验室,云南 昆明 650091; 3.山东科技大学 测绘科学与工程学院,山东 青岛 266590
Author(s):
ZHU Yu12LIU Shiyin12*YI Ying12LI Wanqiu3ZHANG Sidou12
1. Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming 650091, Yunnan China; 2. Institute of International Rivers and Eco-Security Yunnan University, Kunming 650091, Yunnan China; 3. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong China
关键词:
水储量 时空分异 ENSO 青藏高原 三江并流区
Keywords:
terrestrial water storage(TWSC) spatiotemporal differential ENSO Tibetan Plateau Three Parallel Rivers Basin(TPRB)
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000499
文献标志码:
A
摘要:
青藏高原东南部的“三江并流区”气候环境复杂且敏感,陆地水循环过程空间分异明显,在全球气候变化背景下,区域旱涝灾害频发,水循环过程发生变化,刻画区域水储量时空变化特征有助于揭示灾害事件产生的原因。本文使用GRACE RL06数据、水文模型数据、实测数据等,反演获得了2002年4月—2016年8月“三江并流区”水储量变化时间序列及其多年变化空间分布,分析了水储量异常与旱涝事件的联系,进一步探讨了ENSO对水储量影响的强度及滞后程度,并就水储量反演的不确定性做了讨论。获得如下结论:(1)区域水储量处于下降状态,除个别年份,水储量的亏损超过35 mm/a,区域整体较干旱,土壤水是水储量变化的主要组分,区域干旱事件的发生大多与土壤水的持续下降有关;(2)水储量变化空间分异明显,西南下降、西北上升,怒江流域为水储量严重亏损的区域,水储量持续下降的区域常伴随着干旱事件的发生;(3)ENSO对水储量变化的影响存在2.72个月的时滞,每个月的影响强度为0.95 mm,水储量存在重大亏损的区域,ENSO影响强度相对偏大;(4)使用双重尺度因子能在一定程度上恢复滤波造成的误差,但受数据空间分辨率的影响,反演结果仍只能反映变化趋势,难以刻画水储量变化的细部特征。
Abstract:
The complex and sensitive climate conditions and natural environment in Three Parallel Rivers Basin(TPRB), located in the southeastern Tibetan Plateau, China, leads to spatial differentiation of terrestrial water cycle. Under the background of climate change, the increasing frequency and intensity of natural disasters, for example, floods and droughts, results in changing of water balance. Therefore, it is necessary to analyze the possible causes of these events through characterizing the change of terrestrial water storage(TWSC). For this purpose, the GRACE RL06 gravity field data, hydrological model data, and measured data were employed to obtain uninterrupted and high-precision TWSC in the TPRB from April 2002 to August 2016. Spatial and temporal differentiation characteristics of TWSC, using different methods, were acquired to qualitatively and quantitatively analyze the response to extreme climate events. Furthermore, the impact of El Niño Southern Oscillation(ENSO)on TWSC was explored, and the uncertainties of TWSC driven by GRACE were discussed. Some findings were shown as follows:(1)There was a downward trend on TWSC in TPRB during study period. Except for individual years, the loss of TWSC was more than 35 mm/a. The main component of TWSC was the change of soil moisture, so it could be inferred occurrence of regional drought events was mostly related to the continuous decline of soil moisture.(2)The spatial differentiation of TWSC was obvious, with a downward trend in the southwest and an upward trend in the northwest. Of the whole study area, Nujiang basin is the area with the largest loss of TWSC. The area where water reserves had declined severely was the area where extreme drought occurs.(3)The influence of ENSO on TWSC exhibted a 2.72 month time lag and an amplitude change of 0.95 mm per month. The influence intensity of ENSO in regions where water reserve showed a significant loss was relatively large.(4)Although the error caused by filtering could be restored to a certain extent by using double-scale factor method, the inversion results, affected by spatial resolution of the data, could only reflect the tendency of TWSC and be of difficulty to describe the detailed characteristics of TWSC.

参考文献/References:

[1] CHEN Xuhui, JIANG Jinbao, HUI Li. Drought and flood monitoring of the Liao river basin in Northeast China using extended GRACE data[J]. Remote Sensing, 2018, 10(8): 1168.
[2] SCHUMACHER M, FOROOTAN E, DIJK A V, et al. Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model[J]. Remote Sensing of Environment, 2018, 204:212-228.
[3] CHEN J L, WILSON C R, TAPLEY B D, et al. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models[J]. Journal of Geophysical Research, 2009, 114: B05404.
[4] 冯伟,王长青,穆大鹏,等.基于GRACE的空间约束方法监测华北平原地下水储量变化[J].地球物理学报,2017,60(5):1630-1642.[FENG Wei, WANG Changqin, MU Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics-Chinese Edition, 2017, 60(5): 1630-1642]
[5] WANG Linsong, MIKHAIL K K, MAIK T, et al. The challenge of spatial resolutions for GRACE-Based estimates volume changes of larger Man-Made lake: the case of China's three gorges reservoir in the Yangtze river[J]. Remote Sensing, 2019, 11(1): 99.
[6] 李圳,章传银,柯宝贵,等.顾及GRACE季节影响的华北平原水储量变化反演[J].测绘学报,2018,47(7): 940-949.[LI Zhen, ZHANG Chuanyin, KE Baogui, et al. North China plain water storage variation analysis based on GRACE and seasonal influence considering[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 940-949]
[7] 尼胜楠,陈剑利,李进,等.利用GRACE卫星时变重力场监测长江、黄河流域水储量变化[J].大地测量与地球动力学,2014,34(4):49-55.[NI Shengnan, CHEN LiJian, LI Jin, et al. Terrestrial water storage change in the Yangtze and Yellow River basins from GRACE time-variable gravity measurements[J]. Journal of Geodesy and Geodynamics, 2014, 34(4):49-55]
[8] SCANLON B R, LONGUEVERGNE L, LONG D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA[J]. Water Resources Research, 2012, 48(4): W4520.
[9] MOHAMED A, KAREM A. Quantifying modern recharge and depletion rates of the Nubian Aquifer in Egypt[J]. Surveys in Geophysics, 2018, 39(4): 729-751.
[10] ZHANG Zizhan, CHAO B F, CHEN Jianli, et al. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO[J]. Global and Planetary Change, 2015, 126(126): 35-45.
[11] 金钟炜,金涛勇.联合GRACE和气象水文数据研究2010-2016年亚马孙平原水储量异常变化与极端气候和ENSO的关系[J].大地测量与地球动力学,2019,39(2): 199-203.[JIN Zhongwei, JIN Taoyong. Correlation between ENSO and total water storage change anomaly with extreme weather events over Amazon basin from 2010 to 2016 estimated from GRACE and hydroclimatic data[J]. Journal of Geodesy and Geodynamics, 2019, 39(2): 199-203]
[12] ANYAH R O, FOROOTAN E, AWANGE J L, et al. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products[J]. Science of the Total Environment, 2018, 635:1405-1416.
[13] NI Shengnan, CHEN Jianli, WILSON C R, et al. Global terrestrial water storage changes and connections to ENSO events[J]. Surveys in Geophysics, 2018, 39(1): 1-22.
[14] 骆银辉,崔子良.云南三江并流区地质环境问题研究[M].昆明:云南科学技术出版社,2012:12-23.[LUO Yinhui, CUI Ziliang. Research on geologic environment in three parallel rivers of Yunnan protected areas[M]. Kunming: Yunnan Science & Technology Publishing House, 2012:12-23]
[15] 荣艳淑,巩琳,卢寿德.云南2009—2014年持续性气象水文干旱特征及成因分析[J].水资源保护,2018,34(3):22-29.[RONG Yanshu, GONG Lin, LU Shoude. Analysis on characteristics and causes of persistent meteorological and hydrological drought in Yunnan from 2009 to 2014[J]. Water Resources Protection, 2018, 34(3): 22-29.]
[16] TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9):L09607.
[17] 高春春,陆洋,史红岭等.基于GRACE RL06数据监测和分析南极冰盖27个流域质量变化[J].地球物理学报,2019,62(3):864-882.[GAO Chunchun, LU Yang, SHI Hongling. Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data[J]. Chinese Journal of Geophysics(in Chinese), 2019, 62(3):864-882]
[18] CHENG Minkang, TAPLEY B D. Variations in the earth's oblateness during the past 28 years[J]. Journal of Geophysical Research: Solid Earth, 2004, 109: B04402.
[19] CHEN J L, WILSON C R. Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging[J]. Journal of Geophysical Research, 2008, 113(B6): 1-9.
[20] SHIN-CHAN H, SHUM C K, CHRISTOPHER J, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement[J]. Geophysical Journal International, 2005, 163(1): 18-25.
[21] WU Qifan, SI Bingcheng, HE Hailong, et al. Determining Regional-Scale groundwater recharge with GRACE and GLDAS[J]. Remote Sensing, 2019, 11(2): 154.
[22] PENG Yang, JUN Xia, ZHAN Chesheng, et al. Reconstruction of terrestrial water storage anomalies in Northwest China during 1948-2002 using GRACE and GLDAS products[J]. Hydrology Research, 2018, 49(5): 1594-1607.
[23] LI Xia, GAO Yanhong, WANG Wanzhao, et al. Climate change and applicability of GLDAS in the headwater of the Yellow River basin[J]. Advances in Earth Science, 2014, 29:531-540.
[24] RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85:381-394.
[25] YUN Fan. Climate prediction center global monthly soil moisture data set at 0.5° resolution for 1948 to present[J]. Journal of Geophysical Research, 2004, 109: D10102.
[26] SCHNEIDER U, BECKER A, FINGER P, et al. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology, 2014, 115(1/2): 15-40.
[27] SONI A, SYED T H. Diagnosing Land Water Storage Variations in Major Indian River Basins using GRACE observations[J]. Global & Planetary Change, 2015, 133:263-271.
[28] WOLTER K, MICHAEL S T. El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index(MEI.ext)[J]. International Journal of Climatology, 2011, 31(7): 1074-1087.
[29] POMPA-GARCíA M, NéMIGA X A. ENSO index teleconnection with seasonal precipitation in a temperate ecosystem of northern Mexico[J]. Atmósfera, 2015, 28(1): 43-50.
[30] RÄSÄNEN T A, LINDGREN V, GUILLAUME J A, et al. On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia[J]. Climate of the Past Discussions, 2015, 11(6): 5307-5343.
[31] ROJO J, RIVERO R, ROMERO-MORTE J, et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing[J]. International Journal of Biometeorology, 2017, 61(2): 335-348.
[32] SANCHEZ-VAZQUEZ M J, NIELEN M, GEORGE J G, et al. Using seasonal-trend decomposition based on loess(STL)to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005-2011[J]. Preventive Veterinary Medicine, 2012, 104(1/2): 65-73.
[33] CLEVELAND R B, CLEVELAND W S. A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6:3-33.
[34] WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
[35] FENG Wei, ZHONG Min, JEAN-MICHEL L, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment(GRACE)data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118.
[36] SWENSON S, WAHR J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8): 1-4.
[37] KLEES R, ZAPREEVA E A, WINSEMIUS H C, et al. The bias in GRACE estimates of continental water storage variations[J]. Hydrology and Earth System Sciences, 2007, 11(4): 1227-1241.
[38] 冯伟,王长青,穆大鹏,等.基于GRACE的空间约束方法监测华北平原地下水储量变化[J].地球物理学报,2017,60(5):1630-1642.[FENG Wei, WANG Changqing, MU Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642]
[39] 李婉秋,王伟,章传银,等.利用GRACE卫星重力数据监测关中地区地下水储量变化[J].地球物理学报,2018,61(6):2237-2245.[LI Wanqiu, WANG Wei, ZHANG Chuanyin, et al. Monitoring groundwater storage variations in the Guanzhong area using GRACE satellite gravity data[J]. Chinese Journal of Geophysics, 2018, 61(6): 2237-2245]
[40] LONG Di, YANG Yuting, WADA Y, et al. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168:177-193.
[41] CAO Yanping, NAN Zhuotong, CHENG Guodong. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China[J]. Remote Sensing, 2015, 7(1): 1021-1047.
[42] GHIGGI G, HUMPHREY V, SENEVIRATNE S I, et al. GRUN: an observations-based global gridded runoff dataset from 1902 to 2014[J]. Earth System Science Data, 2019, 11(4): 1655-1674.
[43] DÖLL P, SCHMIED H M, SCHUH C, et al. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites[J]. Water Resources Research, 2014, 50(7): 5698-5720.
[44] CHAO Nengfang, WANG Zhengtao. Characterized flood potential in the Yangtze river basin from GRACE gravity observation, hydrological model, and In-Situ hydrological station[J]. Journal of Hydrologic Engineering, 2017, 22(9): 05017016.
[45] 杨大文,杨汉波,雷慧闽.流域水文学[M].北京:清华大学出版社,2014:21-46.[YANG Dawen, YANG Hanbo, LEI Huimin. Watershed hydrology[M]. Beijing: Tsinghua University Press, 2014:21-46]
[46] PHILLIPS T, NEREM R S, FOX-KEMPER B, et al. The influence of ENSO on global terrestrial water storage using GRACE[J]. Geophysical Research Letters, 2012, 39(16):L1605.
[47] SALISBURY J I, WIMBUSH M. Using modern time series analysis techniques to predict ENSO events from the SOI time series[J]. Nonlinear Processes in Geophysics, 2002, 9(3/4): 341-345.
[48] KÄÄB A, TREICHLER D, NUTH C, et al. Brief communication: contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564.
[49] ZHOU Yushan, LI Zhiwei, JIA Li, et al. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs[J]. Remote Sensing of Environment, 2018, 210:96-112.
[50] BERTHIER E, CABOT V, VINCENT C, et al. Decadal Region-Wide and Glacier-Wide mass balances derived from Multi-Temporal ASTER satellite digital elevation models. validation over the Mont-Blanc area[J]. Frontiers in Earth Science, 2016, 4:63.
[51] OUYANG R, LIU W, FU G, et al. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years[J]. Hydrology and Earth System Sciences, 2014, 11(4): 4235-4265.
[52] 刘颖,倪允琪.ENSO对亚洲夏季风环流和中国夏季降水影响的诊断研究[J].气象学报,1998,56(6):681-691.[LIU Ying, NI Yunqi. Diagnostic research of the effects of ENSO on the Asian summer monsoon circulation and the summer precipitation in China[J]. Acta Meteorologica Sinica, 1998, 56(6): 681-691]
[53] JUAN Feng, WEN Chen. Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases[J]. Advances in Atmospheric Sciences, 2014, 31(2): 344-354.
[54] MANHIQUE A J, REASON C C, RYDBERG L, et al. ENSO and Indian ocean sea surface temperatures and their relationships with tropical temperate troughs over Mozambique and the southwest Indian ocean[J]. International Journal of Climatology, 2011, 31(1): 1-13.
[55] BRACCO A, KUCHARSKI F, MOLTENI F, et al. A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO[J]. Climate Dynamics, 2007, 28(5): 441-460.
[56] HU Xiaogong, CHEN Jianli. ZHOU Yonghong. Seasonal variation of water storage in the Yangtze river basin measured by GRACE[J]. Science in China Series D, 2006, 36:225-232.
[57] 翟盘茂.气候变化与灾害[M].北京:气象出版社,2009:89-124.[ZHAI Panmao. Climate change and disasters[M]. Beijing: China Meteorological, 2009:89-124]
[58] 李栋梁,何金海,汤绪,等.青藏高原地面加热场强度与ENSO循环的关系[J].高原气象,2007,26:39-46[LI dongliang, HE Jinhai, TANG Xu, et al. The relationship between the intensity of surface heating fields over the Qinghai-Xizang plateau and ENSO cycle[J]. Plateau Meteorology, 2007, 26:39-46]

相似文献/References:

[1]李红梅 周秉荣*,申红艳,肖宏斌.青海高原干旱时空分异特征及发生风险研究[J].山地学报,2019,(02):230.[doi:10.16089/j.cnki.1008-2786.000417]
 LI Hongmei,ZHOU Bingrong*,SHEN Hongyan XIAO Hongbing.Research on Temporal and Spatial Differentiation and Occurrence Risks of Drought in Qinghai, China[J].Mountain Research,2019,(2):230.[doi:10.16089/j.cnki.1008-2786.000417]
[2]苗培培,赵筱青*,普军伟,等.喀斯特山区生态系统服务权衡/协同时空分异研究——以云南广南县为例[J].山地学报,2023,(1):103.[doi:10.16089/j.cnki.1008-2786.000734]
 MIAO Peipei,ZHAO Xiaoqing*,PU Junwei,et al.Spatiotemporal Differentiation of Ecosystem Service Synergy/Trade-Offs in the Mountainous Karst Areas: A Case Study of Guangnan County, Yunnan, China[J].Mountain Research,2023,(2):103.[doi:10.16089/j.cnki.1008-2786.000734]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-09-30; 改回日期(Accepted date): 2020-03-18
基金项目(Foundation item):云南大学引进人才科研项目(YJRC3201702); 国家自然科学基金国际合作与交流项目(41761144075); 云南大学第十届研究生科研创新项目(2018Z099)。[ Introducing Talent Research Projects In Yunnan University(YJRC3201702); Projects of International Cooperation and Exchange, NSFC(41761144075); The Tenth Graduate Research Innovation Project In Yunnan University(2018Z099)]
作者简介(Biography):朱钰(1992-),男,甘肃平凉人,博士研究生,主要研究方向:水文过程模拟。[ZHU Yu(1992-), male, born in Pingliang, Gansu province. Ph.D. candidate, research on hydrological process simulation] E-mail: yuzhu@mail.ynu.edu.cn
*通讯作者(Corresponding author):刘时银(1963-),男,研究员,主要研究方向:冰冻圈与水循环。[LIU Shiyin(1963-), male, professor, specialized in the cryosphere and water circulation]
更新日期/Last Update: 2020-03-30