[1]张家明a,b,徐则民a*,等.植被发育斜坡土体大孔隙结构多尺度特征[J].山地学报,2019,(05):717-727.[doi:10.16089/j.cnki.1008-2786.000462]
 ZHANG Jiaminga,b,XU Zemina*,et al.Multi-scale Features of Macropore Structures in Soil of Well Vegetated Slopes[J].Mountain Research,2019,(05):717-727.[doi:10.16089/j.cnki.1008-2786.000462]
点击复制

植被发育斜坡土体大孔隙结构多尺度特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年05期
页码:
717-727
栏目:
山地灾害
出版日期:
2019-09-30

文章信息/Info

Title:
Multi-scale Features of Macropore Structures in Soil of Well Vegetated Slopes
文章编号:
1008-2786-(2019)5-717-11
作者:
张家明1ab徐则民1a*李 峰1b李乾坤2
1. 昆明理工大学 a.建筑工程学院,昆明 650500,b. 国土资源工程学院,昆明 650093; 2. 中煤科工集团 南京设计研究院有限公司,南京 210031
Author(s):
ZHANG Jiaming1ab XU Zemin1a*LI Feng1bLI Qiankun2
1. Kunming University of Science and Technology a. Faculty of Civil Engineering and Mechanics, Kunming 650500, China; b. Faculty of Land Resource Engineering, Kunming 650093,China; 2. China Coal Technology & Engineering Group Nanjing Design & Research Institute Co.Ltd., Nanjing 210031, China
关键词:
滑坡 强降雨 优先流 大孔隙 几何形态 分布特征
Keywords:
landslide heavy rainfall preferential flow macropores geometry morphology distribution properties
分类号:
P642.1~A
DOI:
10.16089/j.cnki.1008-2786.000462
摘要:
植被发育斜坡土体中普遍存在大孔隙,在强降雨过程中大孔隙产生的优先流加快降雨入渗,影响斜坡稳定。大孔隙结构影响优先流过程和优先流的水动力特性。为探明植被发育斜坡土体大孔隙结构的多尺度特征,本文在分析土体大孔隙研究进展的基础上,提出适用于研究植被发育斜坡土体大孔隙的试验方法。以云南省段家营、头寨、象冲、东月各、白泥山和贵州八渡滑坡的植被发育斜坡土体为研究对象,采用挖掘法、染色示踪法、CT扫描法、SEM法定性和定量分析植被发育斜坡土体大孔隙的多尺度几何形态和分布特征。研究表明:挖掘法、染色示踪法、CT扫描法、内窥镜检查和SEM法适用于分析植被发育斜坡土体的大孔隙结构; 植被发育斜坡土体的大孔隙有腐烂根系通道、根-土间隙、动物通道、团聚体间大孔隙、土-石间隙、干缩裂隙和成因不明大孔隙,其中前四种是主要类型; 各种大孔隙相互交织组成大孔隙网络系统; 受到植物物种、树龄、动物物种、土体生态系统和立地条件的影响,不同类型大孔隙的多尺度几何形态和分布特征不同。将先进技术手段与染色剂溶液降雨模拟示踪试验结合起来,研究大尺度的大孔隙三维几何形态和分布特征是未来的主要工作。
Abstract:
Macropores are richly developed in well vegetated slope soils, where the preferential flow could facilitate infiltration under the circumstance of heavy precipitation, thus influencing slope stability. The preferential flow process and hydrological regime are dominated by the structure of macropores. In order to study the multi-scale features of macropore structures in well vegetated slope soils, researches on soil macropores were comprehensively reviewed, and in this study a practical approach to macropore examination in well vegetated slope soil was proposed. Several well vegetated slopes in Duanjiaying, Touzhai, Xiangchong, Dongyuege, Baini Mountain(Yunnan province, China)and Badu landslide(Guizhou province, China)were performed as a case study, and tunneling method, dye tracer method, X-ray computerized tomography scanning and scanning electron microscopy(SEM)were combined to qualitatively and quantitatively analyze the multi-scale geometry morphology and distribution characteristics of macropores. The results showed that tunneling method, dye tracer method, X-ray computerized tomography scanning, SEM and endoscopy were suitable to analyze macropores structures in well vegetated slope soils. Macropores in well vegetated slope soils composed of decayed root channels, root-soil interstice, animal burrows, inter aggregate porosity, soil-stone interstice, desiccation cracks and macropores without knowing origin. Thereinto, decayed root channels, root-soil interstice, animal burrows and inter aggregate porosity were primary macropores. Different types of macropores were interconnected, which constituted an important macropores networks. Influenced by plant species, tree-age, animal species, soil ecosystem and site condition, different types of macropores had distinct geometry morphology and distribution properties. It is necessary to combine tracer solution rainfall simulation infiltration experiment with advanced technologies in assessing large-scale three-dimensional geometry morphology and distribution properties of macropores networks.

参考文献/References:

[1] CHIGIRA M. Geologic factors contributing to landslide Generation in a pyroclastic area: august 1998 Nishigo Village, Japan[J]. Geomorphology, 2002, 46(1): 117-128.
[2] 余峙丹,张辉,郭荣芬.云南楚雄特大滑坡泥石流气象成因[J].气象科技,2010,38(1):136-140.[YU Shidan, ZHANG Hui, GUO Rongfen. Analysis of meteorological causes of an exceptional landslide and debris flow event in Chuxiong[J]. Meteorological Science and Technology, 2010, 38(1): 136-140]
[3] 郭富赟,孟兴民,黎志恒,等.天水市“7·25”群发性地质灾害特征及成因[J].山地学报,2015,33(1):100-107.[GUO Fuyun, MENG Xingmin, LI Zhiheng, et al. Characteristics and causes of assembled geo-hazards induced by the rainstorm on 25th July 2013 in Tianshui city, Gansu, China[J]. Mountain Research, 2015, 33(1): 100-107]
[4] 徐则民,黄润秋.山区流域高盖度斜坡对极端降雨事件的地下水响应[J].地球科学进展,2011,26(6):598-607.[XU Zemin, HUANG Runqiu. The response of the groundwater in vegetated slopes in mountainous catchments to heavy rain events[J]. Advances in Earth Science, 2011, 26(6): 598-607]
[5] 张家明,徐则民,裴银鸽.植被发育斜坡非饱和带大孔隙[J].山地学报,2012,30(4):439-449.[ZHANG Jiaming, XU Zemin, PEI Yinge. Macropores in vadose zone of well vegetated slopes[J]. Mountain Research, 2012, 30(4): 439-449]
[6] SHARMA R H, KONIETZKY H. Instrumented failure of hillslope models with soil-pipes[J]. Geomorphology, 2011, 130(3/4): 272-279.
[7] Balzano B, Tarantino A, Ridley A. Preliminary analysis on the impacts of the rhizosphere on occurrence of rainfall-induced shallow landslides[J]. Landslides, 2019, 16: 1885-1901.
[8] AUBERTIN G M. Nature and extent of macropores in forest soils and their influence on subsurface water movement[R]. Pennsylvania: Northeastern Forest Experiment Station, 1971: 1-32.
[9] NOGUCHI S, TSUBOYAMA Y, SIDLE R C, et al. Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed, Japan[J]. Journal of Forest Research, 1997, 2(4): 207-215.
[10] 张家明,徐则民.马卡山不同植被群落下非饱和带大孔隙流路径示踪试验[J].吉林大学学报(地球科学版),2013,43(6):1922-1935.[ZHANG Jiaming, XU Zemin. A dye tracer experiment to study macropore flow paths in unsaturated zone under different vegetation communities in Maka Mountain, China[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1922-1935]
[11] 张家明,徐则民,李峰.植被发育斜坡土体大孔隙分布特征的染色示踪法研究[J].山地学报,2015,33(1):1-7.[ZHANG Jiaming, XU Zemin, LI Feng. Heterogeneous characteristics of macropores in soil of well vegetated slopes by dye tracing method[J]. Mountain Research, 2015, 33(1): 1-7]
[12] NOBLES M M, WILDING L P, LIN H S. Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils[J]. Journal of Hydrology, 2010, 393(1/2): 114-122.
[13] 刘目兴,吴丹,吴四平,等.三峡库区森林土壤大孔隙特征及对饱和导水率的影响[J].生态学报,2016,36(11):3189-3196.LIU Muxing, WU Dan, WU Siping, et al. Characteristic of soil macropores under various types of forest coverage and their influence on saturated hydraulic conductivity in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2016, 36(11): 3189-3196]
[14] 陆斌,张胜利,李侃,等.秦岭火地塘林区土壤大孔隙分布特征及对导水性能的影响[J].生态学报,2014,34(6):1512-1519.[LU Bin, ZHANG Shengli, LI Kan, et al. Distribution of soil macropores and their influence on saturated hydraulic conductivity in the Huoditang forest region of the Qinling Mountains[J]. Acta Ecologica Sinica, 2014, 34(6): 1512-1519]
[15] 石辉,王峰,李秧秧.黄土丘陵区人工油松林地土壤大孔隙定量研究[J].中国生态农业学报,2007,15(1):28-32.[SHI Hui, WANG Feng, LI Yangyang. Quantitative study on soil macropores under artifical Chinese pine(Pinus tabuleaformis Carr.)forest in loess hilly region[J]. Chinese Journal of Eco-agriculture, 2007, 15(1): 28-32]
[16] 时忠杰,王彦辉,熊伟,等.六盘山典型植被类型土壤中石砾对大孔隙形成的影响[J].山地学报,2007,25(5):541-547.[SHI Zhongjie, WANG Yanhui, XIONG Wei, et al. Effect of rock fragments on the formation of soil macroporosity of typical vegetation in Liupan Mountains of westnorth, China[J]. Mountain Research, 2007, 25(5): 541-547]
[17] HLAVÁIKOVÁH, HOLKO L, DANKO M, et al. Estimation of macropore flow characteristics in stony soils of a small mountain catchment[J]. Journal of Hydrology, 2019, 574: 1176-1187.
[18] 李伟莉,金昌杰,王安志,等.长白山主要类型森林土壤大孔隙数量与垂直分布规律[J].应用生态学报,2007,18(10):2179-2184.[LI Weili, JIN Changjie, WANG Anzhi, et al. Amount and vertical distribution of macropores in forest soils in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2179-2184]
[19] WATSON K W, LUXMOORE R J. Estimating macroporosity in a forest watershed by use of a tension infiltrometer[J]. Soil Science Society of America Journal, 1986, 50(3): 578-582.
[20] AUCLERC A, CAPOWIEZ Y, GUEROLD F, et al. Application of X-ray tomography to evaluate liming impact on earthworm burrowing activity in an acidic forest soil under laboratory conditions[J]. Geoderma, 2013, 202: 45-50.
[21] 孟晨,牛健植,骆紫藤,等.华北土石山区森林土壤大孔隙对土壤理化性质及根系的响应[J].水土保持学报,2019,33(3):94-100.[MENG Chen, NIU Jianzhi, LUO Ziteng, et al. Response of soil macropore to soil phychemical properties and root in forest in rocky mountain area of North China[J]. Journal of Soil and Water Conservation, 2019, 33(3): 94-100]
[22] 徐则民,黄润秋,唐正光,等.植被护坡的局限性及其对深层滑坡孕育的贡献[J].岩石力学与工程学报,2005,24(3):438-450.[XU Zemin, HUANG Runqiu, TANG Zhengguang, et al. Limitations of biotechnical slope protection and contribution of vegetation to deep seated landslide preparation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 438-450]
[23] PAGENKEMPER S K, ATHMANN M, UTEAU D A, et al. The effect of earthworm activity on soil bioporosity-Investigated with X-ray computed tomography and endoscopy[J]. Soil & Tillage Research, 2015, 146(A): 79-88.
[24] 侯汝几.基于CT扫描对植被发育斜坡土体大孔隙和渗透性的研究[D].昆明:昆明理工大学,2015:23-42.[HOU Ruji. The study of macropore and permeability of well vegetated slope soils based on CT scans[D]. Kunming: Kunming University of Science and Technology, 2015: 23-42]
[25] 张家明.植被发育斜坡非饱和带土体大孔隙对降雨入渗影响研究[D].昆明:昆明理工大学,2013:16-24.[ZHANG Jiaming. Research on the effects of macropores on rainfall infiltration in vadose zone soils of well vegetated slope[D]. Kunming: Kunming University of Science and Technology, 2013: 16-24]
[26] 陈积普.基于数值模拟和模型试验的尾矿库地震动力响应特性研究[D].昆明:昆明理工大学,2015:15-35.[CHEN Jipu. Research on the characteristics of seismic dynamic response of tailings pond based on numerical simulation and mode test[D]. Kunming: Kunming University of Science and Technology, 2015: 15-35]
[27] 苏鹏程,韦方强,谢涛.云南贡山8.18特大泥石流成因及其对矿产资源开发的危害[J].资源科学,2012,34(7):1248-1256.[SU Pengcheng, WEI Fangqiang, XIE Tao. Causal analysis of debris flow on August 18, 2010 in Gongshan, Yunnan province and its harm to the development and utilization of mineral resources[J]. Resources Science, 2012, 34(7): 1248-1256]
[28] 罗汝英,黄瑞采.森林土壤学(问题与方法)[M].北京:科学出版社,1983:367-368.[LUO Ruying, HUANG Ruicai. Forested soil(questions and methods)[M]. Beijing: Science Press, 1983: 367-368]
[29] LÉONARD J, PERRIER E, RAJOT J L. Biological macropores effect on runoff and infiltration: a combined experimental and modelling approach[J]. Agriculture, Ecosystems & Environment, 2004, 104(2): 277-285.
[30] GRANT W J, STRUCHTEMEYER R A. Influence of the coarse fraction in two maine potato soils on infiltration, runoff and erosion[J]. Soil Science Society of America Journal, 1959, 23(5): 391-394.
[31] CERDÀ A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion[J]. European Journal of Soil Science, 2001, 52(1): 59-68.
[32] ILEK A, KUCZE J, WITEK W. Using undisturbed soil samples to study how rock fragments and soil macropores affect the hydraulic conductivity of forest stony soils: some methodological aspects[J]. Journal of Hydrology, 2019, 570: 132-140.

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(05):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(05):89.
[3]白永健,倪化勇,王运生,等.喜德采书组“8?31”滑坡工程地质特征及运动过程[J].山地学报,2014,(03):327.
 BAI Yongjian,NI Huayong,WANG Yusheng,et al.Engineering Geological Characteristics and Motor Process of Caishu Landslide in Xide of Sichuan,China[J].Mountain Research,2014,(05):327.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(05):101.
[5]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(05):257.
[6]田述军,孔纪名.基于斜坡单元和公路功能的滑坡风险评价[J].山地学报,2013,(05):580.
 TIAN Shujun,KONG Jiming.Risk Assessment of Landslide Based on Slope Unit and Highway Function[J].Mountain Research,2013,(05):580.
[7]王秀丽,唐亚.树木地貌学在地质灾害研究中的应用[J].山地学报,2014,(06):761.
 WANG Xiuli,TANG Ya.Application of Dendrogeomorphology in the Research of Geological Disasters[J].Mountain Research,2014,(05):761.
[8]方丹,胡卓玮,王志恒,等.基于GIS的北川县地震次生滑坡灾害空间预测[J].山地学报,2012,(02):230.
 FANG Dan,HU Zhuowei,WANG Zhiheng.Spatial Prediction of EarthquakeInduced Secondary Landslide Disaster in Beichuan County Based on GIS[J].Mountain Research,2012,(05):230.
[9]常鸣,唐川,李为乐,等.汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征[J].山地学报,2012,(05):561.
 River Basin,ChinaCHANG Ming,TANG Chuan,et al.The Characteristic of Collapse and Landslide by Wenchuan Earthquake in Debris Flow for Mative Region along the Mianyuan[J].Mountain Research,2012,(05):561.
[10]彭永良,郭得令,胡卸文,等.河北省宽城县某滑坡特征与稳定性评价[J].山地学报,2011,(05):591.
 PENG Yongliang,GUO Deling,et al.Characteristics and Stability Analysis of a Landslide in Kuancheng County, Hebei Province[J].Mountain Research,2011,(05):591.

备注/Memo

备注/Memo:
收稿日期(Received date):2015-05-29; 改回日期(Accepted date): 2019-08-22
基金项目(Foundation item):国家自然科学基金-云南联合基金重点项目(U1033601); 云南省人培项目(KKSY201406009); 云南省自然科学基金(2014FD007)。[Joint Funds of National Natural Science Foundation of China with Natural Science Foundation of Yunnan(U1033601); Science Foundation for Fostering Talents in Basic Research of Natural Science Foundation of Yunnan(KKSY201406009); Natural Science Foundation of Yunnan(2014FD0007)]
作者简介(Biography):张家明(1984-),男,云南泸西人,博士,讲师,主要研究方向:工程地质和水文地质。[ZHANG Jiaming(1984-), male,born in Luxi,Yunnan province,Ph.D., lecturer,research on engineering geology and hydrogeololgy] E-mail: zjm_engeo@163.com
更新日期/Last Update: 2019-09-30