[1]葛璐月a,b,文星跃a,等.成都粘土与其下伏粘土粒度特征对比及古环境意义[J].山地学报,2019,(05):681-692.[doi:10.16089/j.cnki.1008-2786.000459]
 GE Luyuea,b,WEN Xingyuea,et al.Comparison of Particle Size Characteristics Between the Chengdu Clay and Its Underlying Clay: Implication for Paleoenvironment Changes[J].Mountain Research,2019,(05):681-692.[doi:10.16089/j.cnki.1008-2786.000459]
点击复制

成都粘土与其下伏粘土粒度特征对比及古环境意义()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年05期
页码:
681-692
栏目:
山地环境
出版日期:
2019-09-30

文章信息/Info

Title:
Comparison of Particle Size Characteristics Between the Chengdu Clay and Its Underlying Clay: Implication for Paleoenvironment Changes
文章编号:
1008-2786-(2019)5-681-12
作者:
葛璐月ab文星跃ab*
西华师范大学 a.国土资源学院; b. 区域环境演变与保护研究中心,四川 南充,637009
Author(s):
GE Luyueab WEN Xingyueab*
China West Normal University, a. College of Land and Resources; b. Research Center for Regional Environmental Evolution and Conservation, Nanchong 637009, Sichuan China
关键词:
成都粘土 粒度参数 分形维数 沉积环境
Keywords:
Chengdu clay particle size parameters fractal dimension sedimentary environment
分类号:
P534.63; P642.13~A
DOI:
10.16089/j.cnki.1008-2786.000459
摘要:
成都粘土下伏地层为褐色粘土和网纹红土,揭示其沉积环境特征差异性对深入理解区域环境演变具有重要意义。通过对比分析三层粘土的粒度组成、粒径频率曲线、粒度参数和分形维数特征,探讨了三层粘土沉积环境的差异性。结果表明:(1)成都粘土及其下伏粘土均以粉砂(5~50 μm)为主,相较北方黄土粘粒(<5 μm)含量偏高而Kd 值偏低,且含较多>100 μm的粗颗粒。(2)三层粘土的粒度参数特征与典型风成黄土相似而明显区别于河湖相沉积物。(3)褐色粘土具有较高的粗粉砂(10~50 μm)含量和较大的粒径分布偏度、峰度值,而平均粒径(φ值)和分形维数最小; 成都粘土标准偏差为最大,峰度最小,而网纹红土的平均粒径和分形维数最大。(4)三层粘土的粒度分形维数均与粒度组成、平均粒径和峰度呈显著相关性,而仅有褐色粘土分形维数与标准偏差和偏度具有显著相关性。(5)风化成土作用会影响沉积物粒度组成、粒度参数和分形维数,成都粘土和网纹红土较褐色粘土经历了较强的风化成土作用,三层粘土按沉积时间先后古气候特征表现为暖湿-冷干-暖湿的变化趋势。
Abstract:
To further understand regional environmental evolution in the Chengdu plain, it is necessary to identify the sedimentary environment characteristics of Chengdu clays and its underlying strata which are brown clays and reticulated red clays. Particle size distribution, particle size frequency curve, particle size parameter and fractal dimension were analyzed. The results showed that:(1)Particle sizes of silt(5~50 μm)dominated the Chengdu clays and its underlying clays, while clays(<5 μm)concentrations and Kd values were higher and lower than that of northern loess, respectively; Coarse particles of >100 μm were presented in the curves of particle size frequency for all samples.(2)The three-layer clays were similar to northern loess and different from fluvial and lacustrine sediments from the characteristics of particle size parameters.(3)In comparison, the brown clays showed higher values of skewness and kurtosis as well as coarse silt(10~50 μm)concentrations, and lower values of mean particle size(φ)and fractal dimension. While higher values of standard deviation and lower kurtosis values were presented in the Chengdu clays; and the values of mean particle size(φ)and fractal dimension from the reticulated red clays were the largest.(4)The fractal dimension was significantly correlated with particle size composition, average particle size and kurtosis from the three clay layers, while only the brown clays showed a significant correlation between the values of fractal dimension, standard deviation and skewness.(5)The Chengdu clays and reticulated red clays rather than the brown clays once experienced a strong weathering and pedogenesis process, showing a climatic change trend of warmth-humidity to cold-drought and to warmth-humidity.

参考文献/References:

[1] THORP J, DYE D S. The Chengdu clays - deposits of possible loessial origin in western and northwestern Sichuan basin[J]. Acta Geologica Sinica, 1936, 15(2): 225-242.
[2] FENG Jinliang, HU Zhaoguo, JU Jianting, et al. The dust provenance and transport mechanism for the Chengdu Clay in the Sichuan Basin, China[J]. Catena, 2014, 121:68-80.
[3] 冯金良,赵振宏,赵翔,等.“成都粘土”的成因、物源、时代及其古环境问题[J].山地学报,2014,32(5):513-525.[FENG Jinliang, ZHAO Zhenhong, ZHAO Xiang, et al. The origin, provenance, age and climatic links of the Chengdu clay: a review[J]. Mountain Research, 2014, 32(5): 513-525]
[4] 张惠英.从微结构特征对成都粘土成因的初步探讨[J].水文地质工程地质,1986,13(1):17-19.[ZHANG Huiying. Genesis of the Chengdu clay based on microstructural features research[J]. Hydrogeology & Engineering Geology, 1986, 13(1): 17-19]
[5] 成都地质学院水文工程地质教研室. 成都粘土的工程地质特征[J]. 成都地质学院学报,1960,1(1):75-91.[Hydrological Engineering Geology Division, Chengdu College of Geology. Engineering geological characteristics of Chengdu Clay [J]. Journal of Chengdu College of Geology, 1960, 1(1):75-91]
[6] 费美高,许国琳,张品萃.成都粘土中的构造断裂现象及其研究意义[J].地质灾害与环境保护,1995,6(3):24-32.[FEI Meigao, XU Guolin, ZHANG Pincui. Phenomena of tectonic fractures and faults in Chengdu Clay[J]. Journal of Geological Hazards and Environment Preservation, 1995, 6(3): 24-32]
[7] 张品萃. 游离Fe2O3对成都粘土部分工程地质特征的影响[J].矿物岩石,1999,19(1):83-86.[ZHANG Pincui. Effect of free Fe2O3 on the engineering properties of Chengdu Clay[J]. Journal of Mineralogy and Petrology, 1999, 19(1): 83-86]
[8] 四川省区域地层表编写组. 西南地区区域地层表(四川分册)[M]. 北京: 地质出版社:1978,96-97. [Editorial Committee of Sichuan stratigraphy. Regional stratigraphy in Southwest China(Sichuan branch)[M]. Beijing: Geological Publishing House,1978:96-97]
[9] 李承三,吴燕生,李永昭,等. 四川龙门山南段东坡及其山前带第四纪冰川遗迹[G] //中国第四纪委员会等,中国第四纪冰川遗迹研究文集. 北京:科学出版社,1964:14-84.[LI Chengsan, WU Yansheng, LI Yongzhao, et al. Quaternary glacial relics in eastern foot of southern Longmenshan Mountains [G] / / Corpus of Quaternary glacial relics in China, Quaternary Commission of China. Beijing: Science Press, 1964:14-84]
[10] 李春昱.雅安期与江北期砾石层之生成[J].地质论评,1947,12:117-126.[LI Chunyu. Generation of gravel layers in Ya'an and Jiangbei periods[J]. Geological Review, 1947, 12: 117-126]
[11] 柯懋. 关于“成都粘土”问题的商榷[N]. 地质报,1981-03-20.[KE Mao. Discussion on the issue of “Chengdu clay” [N]. Geological newspaper, 1981-03-20]
[12] 汪波,聂前勇,王运生,等.也论成都粘土的成因[J].地质灾害与环境保护,2002,13(1):54-56.[WANG Bo, NIE Qianyong, WANG Yunsheng, et al. Discussion on the genetic mechanism of the Chengdu Clay[J]. Journal of Geological Hazards and Environment Preservation, 2002, 13(1): 54-56]
[13] FENG Jinliang, HU Zhaoguo, JU Jianting, et al. Variations in trace element(including rare earth element)concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits[J]. Quaternary International, 2011, 236(1): 116-126.
[14] 马溶之.中国黄土之生成[J].地质论评,1944,9(z2):207-224.[MA Rongzhi. Formation of Chinese loess[J]. Geology Reviews, 1944, 9(z2): 207-224]
[15] FENG Jinliang, JU Jianting, CHEN Feng, et al. Identification of a late Quaternary alluvial-aeolian sedimentary sequence in the Sichuan Basin, China[J]. Quaternary Research, 2016, 85(2): 279-289.
[16] 应立朝,梁斌,王全伟,等.成都平原区成都粘土的粒度特征及其成因意义[J].沉积与特提斯地质,2012,32(1):72-77.[YING Lichao, LIANG Bin, WANG Quanwei, et al. Grain size analysis and origin of the Chengdu clay from the Chengdu Plain, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(1): 72-77]
[17] 乔彦松,赵志中,李增悦,等.成都平原红土堆积的风成成因证据[J].第四纪研究,2007,27(2):286-294.[QIAO Yansong, ZHAO Zhizhong, LI Zengyue, et al. Aeolian origin of the red earth formation in the Chengdu Plain[J]. Quaternary Science, 2007, 27(2): 286-294]
[18] 胡兆国,冯金良,鞠建廷.成都粘土中石英的粒度分布及其表面微结构特征[J].山地学报,2010,28(4):392-406.[HU Zhaoguo, FENG Jinliang, JU Jianting. Grain size distribution and micro-structure of quartz in the Chengdu Clay[J]. Mountain Research, 2010, 28(4): 392-406]
[19] 梁斌,王全伟,朱兵,等.川西地区成都粘土的光释光年代学[J].第四纪研究,2013,33(4):823-828.[LIANG Bin, WANG Quanwei, ZHU Bing, et al. Optically stimulated luminescence dating of the Chengdu clay in the West Sichuan[J]. Quaternary Science, 2013, 33(4): 823-828]
[20] ZHAO Zhizhong, QIAO Yansong, WANG Yan, et al. Magnetostratigraphic and paleoclimatic studies on the red earth formation from the Chengdu Plain in Sichuan Province, China[J]. Science in China(Series D: Earth Sciences), 2007, 50(6): 927-935.
[21] 应立朝,梁斌,王全伟,等.成都粘土地球化学特征及其对物源和风化强度的指示[J].中国地质,2013,40(5):1666-1674.[YING Lichao, LIANG Bin, WANG Quanwei, et al. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity[J]. Geology in China, 2013, 40(5): 1666-1674]
[22] DING Z, YU Z, RUTTER N W, et al. Towards an orbital time-scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
[23] LV Lianqing, FANG Xiaomin, LU Huayu, et al. Millennial-scale climate change since the last glaciation recorded by grain sizes of loess deposits on the northeastern Tibetan Plateau[J]. Chinese Science Bulletin, 2004, 49(11): 1157-1164.
[24] 乔彦松,郭正堂,郝青振,等.中新世黄土-古土壤序列的粒度特征及其对成因的指示意义[J].中国科学:地球科学,2006,36(7):646-653.[QIAO Yansong, GUO Zhengtang, HAO Qingzhen, et al. 2006.Grain-size features of a Miocene loess-soil sequence at Qinan: implications on its origin[J]. Science in China(Series D), 2006, 36(7): 646-653]
[25] 刘涛,庞奖励,黄春长,等.湖北郧县黄坪村黄土-古土壤序列体积分形维数特征及其环境意义[J].东农业科学,2018,50(4):73-78.[LIU Tao, PANG Jiangli, HUANG Chunchang, et al. Volumetric fractal dimension characteristics of Loess-Paleosol sequence and its environmental significance in Huangping village, Yunxian county, Hubei province[J]. Shandong Agricultural Sciences, 2018, 50(4): 73-78]
[26] FRIEDMAN G M, SANDERS J E. Principles of sedimentology[M]. New York: John Wiley & Sons, 1978: 792.
[27] 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550.[WANG Guoliang, ZHOU Shenglu, ZHAO Qiguo. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4): 545-550]
[28] 刘东生.黄土与环境[M].北京:科学出版社,1985:203.[LIU Dongsheng. Loess and the environment[M]. Beijing: Science Press, 1985: 203]
[29] PATTERSON E M, GILLETTE D A. Commonalities in measured size distributions for aerosols having a soil-derived component[J]. Journal of Geophysical Research, 1977, 82(15): 2074-2082
[30] 盛海洋.青藏高原东北缘若尔盖盆地黄土的成因[J].地球科学,2010,35(1):62-74.[SHENG Haiyang. Zoigü basin loess origin in the Northeast Tibet plateau[J]. Earth Science, 2010, 35(1): 62-74]
[31] 鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比:红粘土风成成因的新证据[J].沉积学报,1999,2(2):226-232.[LU Huayu, AN Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese loess plateau[J]. Acta Sedimentologica Sinica, 1999, 2(2): 226-232]
[32] 高顺利. 天山乌鲁木齐河源冰债物与冰水沉积物的粒度特征[J]. 新疆大学学报(自然科学版), 1984, 10(4):75-83.[Gao Shunli. Particle size characters of till and glaciofluyial deposits at the head of Urumqi, Tian Shan[J]. Journal of Xinjiang University(Natural Science Edition), 1984, 10(4):75-83.
[33] 武安斌.托赖山“七一”冰川流域冰债石和冰水砾石的沉积组构分析[J].兰州大学学报,1983,27(3):127-139.[WU Anbin. The analysis of sedimentary fabric of morainic stones and fluvioglacial gravels of “7.1” glacial drainage Tuolaishan[J]. Journal of Lanzhou University, 1983, 27(3): 127-139]
[34] 冯志刚,王世杰,孙承兴,等.岩溶地区缺失原岩残余结构红色风化壳的粒度分布特征及成因指示--以贵州平坝为例[J].矿物学报,2002,22(3):243-248.[FENG Zhigang, WANG Shijie, SUN Chengxing, et al. Particle distribution of red weathering crust and its genetic implication-as exemplified by Pingba County of Guizhou, China[J]. Acta Mineralogica Sinica, 2002, 22(3): 243-248]
[35] 乔彦松,郭正堂,郝青振,等.皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J].科学通报,2003,48(13):1465-1469.[QIAO Yansong, GUO Zhengtang, HAO Qingzhen, et al. Loess-soil sequences in southern Anhui province: magentostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin, 2003, 48(13): 1465-1469]
[36] 张威,郭善莉,李永化,等.辽东半岛黄土粒度分维特征及其环境意义[J].地理科学进展,2010,29(1):79-86.[ZHANG Wei, GUO Shanli, LI Yonghua, et al. Grain-size Fractal Dimension of Loess and Its Environmental Significance in the Peninsula of East Liaoning[J]. Progress in Geography, 2010, 29(1): 79-86]
[37] 蒙仲举,王猛,高永,等.基于土壤粒度参数的荒漠草原地表粗粒化过程[J].水土保持研究,2017,24(6):22-28.[MENG Zhongju, WANG Meng, GAO Yong, et al. Soil coarse graining process based on surface grain size distribution in Xilamuren desert steppe[J]. Research of Soil and Water Conservation, 2017, 24(6): 22-28]
[38] 武安斌.冰碛物的粒度参数特征及其与沉积环境的关系[J].冰川冻土,1983,5(2):47-53.[WU Anbin. The characteristics of grain-size parameters of till and their relation to sedimentary environments[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 47-53]
[39] 党亚爱,李世清,王国栋,等.黄土高原典型土壤剖面土壤颗粒组成分形特征[J].农业工程学报,2009,25(9):74-78.[DANG Yaai, LI Shiqing, WANG Guodong, et al. Fractal characteristics of soil particle composition for typical types of soil profile on Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 74-78]
[40] 文星跃,黄成敏,黄凤琴,等.岷江上游河谷土壤粒径分形维数及其影响因素[J].华南师范大学学报(自然科学版),2011,43(1):80-86.[WEN Xingyue, HUANG Chengmin, HUANG Fengqin, et al. Fractal dimensions of soil particles and related affecting factors from the valley of upper Minjiang river[J]. Journal of South China Normal University(Natural Science Edition), 2011, 43(1): 80-86]
[41] 王丽娟,庞奖励,黄春长,等.关中东部TSG全新世剖面粒度分形特征及古气候意义[J].土壤通报,2012,43(1):1-5.[WANG Lijuan, PANG Jiangli, HUANG Chunchang, et al. Grain-size Fractal Characteristics of TSG Holocene Profile and Its Significance in Eastern Guanzhong[J]. Chinese Journal of Soil Science, 2012, 43(1): 1-5]
[42] 贾建军,高抒,薛允传.图解法与矩法沉积物粒度参数的对比[J].海洋与湖沼,2002,33(6):577-582.[JIA Jianjun, GAO Shu, XUE Yunchuan. Grain-size parameters derived from graphic and moment methods: a comparative study[J]. Oceanologia et Limnologia Sinica, 2002, 33(6): 577-582]
[43] OTTO B L, SCHNEIDER R, BRADY E C, et al. A comparison of PMIP2 model simulations and the MARGO proxy Reconstruction for tropical sea surface temperatures at last glacial maximum[J]. Climate Dynamics, 2009, 32(6): 799-815.
[44] MIX A C, BARD E, SCHNEIDER R, et al. Environmental processes of the ice age: land, oceans, glaciers(EPILOG)[J]. Quaternary Science Reviews, 20(4):627-657.
[45] KURAHASHI-NAKAMURA T, LOSCH M, PAUL A. Can sparse proxy data constrain the strength of the Atlantic meridional overturning circulation?[J]. Geoscientific Model Development, 2014, 7(1): 419-432.
[46] MUDELSEE M, SCHULZ M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka[J]. Earth and Planetary Science Letters, 1997, 151(1/2): 117-123.
[47] BERGER W H, YASUDA M K, BICKERT T, et al. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806[J]. Geology, 1994, 22(5): 463-467.
[48] JIAN Zhimim, ZHAO Quanhong, CHENG Xinrong, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2003, 193(3): 425-442.
[49] GUO Zhentang, LIU Dongsheng, FEDOROFF N, et al. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 1998, 18(3/4): 113-128.

相似文献/References:

[1]陈治荣,何银武.据~(14)C年龄数据浅议广汉粘土与成都粘土的时代归属[J].山地学报,1990,(03):167.
[2]胡兆国,冯金良,鞠建廷,等.成都粘土中石英的粒度分布及其表面微结构特征[J].山地学报,2010,(04):392.
[3]梁 瑛,曹文豪,季宪军,等.成都粘土泥浆流变模型探讨[J].山地学报,2021,(2):218.[doi:10.16089/j.cnki.1008-2786.000589]
 LIANG Ying,CAO Wenhao,JI Xianjun,et al.Discussion on the Rheological Model of Chengdu Clay Slurry[J].Mountain Research,2021,(05):218.[doi:10.16089/j.cnki.1008-2786.000589]

备注/Memo

备注/Memo:
收稿日期(Received date):2018-12-14; 改回日期(Accepted date):2019-05-14
基金项目(Foundation item):国家自然科学基金面上项目(41671220); 西华师范大学英才项目(17YC126)。[National Natural Science Foundation of China(41671220); Talent Project of China West Normal University(17YC126)]
作者简介(Biography):葛璐月(1994-),女,河北邢台人,硕士研究生,主要从事土壤地理研究。[GE Luyue(1994-), female, born in Xingtai, Hebei province, M.Sc. candidate, research on soil geography] E-mail: 1059230589@qq.com
更新日期/Last Update: 2019-09-30