[1]常宗强.祁连山亚高山灌丛林叶面积指数与冠层氮、磷的关系[J].山地学报,2019,(03):337-346.[doi:10.16089/j.cnki.1008-2786.000427]
 CHANG Zongqiang,WANG Rongxin*.Relationship Between Leaf Area Index to Canopy Nitrogen and Phosphorus in Subalpine Scrub Forest of the Qilian Mountains[J].Mountain Research,2019,(03):337-346.[doi:10.16089/j.cnki.1008-2786.000427]
点击复制

祁连山亚高山灌丛林叶面积指数与冠层氮、磷的关系()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年03期
页码:
337-346
栏目:
山地环境
出版日期:
2019-07-20

文章信息/Info

Title:
Relationship Between Leaf Area Index to Canopy Nitrogen and Phosphorus in Subalpine Scrub Forest of the Qilian Mountains
文章编号:
1008-2786-(2019)3-337-10
作者:
常宗强1 2王荣新3*
1. 中国科学院寒区旱区环境与工程研究所, 兰州 730000; 2. 国家林业和草原局 内蒙古巴丹吉林荒漠生态系统国家定位观测研究站,内蒙古 阿拉善 737300; 3. 甘肃省祁连山水源涵林研究院,甘肃 张掖 734000
Author(s):
CHANG Zongqiang1 2WANG Rongxin3*
1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2. Inner Mongolia Badain Jaran Desert Ecosystem Research Station, Alxa 737300, Inner Mongolia, China; 3. Academy of Water Resource Conservation Forests in Qilian Mountains of Gansu Province, Zhangye 734000, Gansu, China
关键词:
亚高山灌丛林 叶面积指数 氮积累量 磷积累量 共同限制 祁连山
Keywords:
subalpine scrub forest leaf area index(LAI) total foliar nitrogen(TFN) total foliar phosphorus(TFP) co-limitation Qilian Mountains
分类号:
S718.55
DOI:
10.16089/j.cnki.1008-2786.000427
文献标志码:
A
摘要:
氮和磷作为植物体内重要的生命元素,在植物群落的生长发育过程中发挥着重要的作用。为了明确祁连山亚高山灌丛林叶面积指数与冠层氮、磷之间的关系,本文通过对祁连山亚高山灌丛林不同植被类型(箭叶锦鸡儿、高山吉拉柳、金露梅)及不同放牧处理(羊群、牦牛,未放牧)条件下灌丛群落的叶面积指数(LAI)与叶片氮积累量(TFN)、叶片磷积累量(TFP)比较发现,在整个亚高山灌丛群落中,LAI与TFN和TFP之间都有较强的相关性,并且TFN和TFP比值的变化表明不同植被类型叶片的生长都受到N、P的共同限制,只是随着LAI的增加,高山吉拉柳主要受到氮素的限制,箭叶锦鸡儿主要受到磷素的限制,而金露梅则受到N、P的共同限制; 在不同放牧条件下,单位面积LAI对应的TFN的值较高而TFP的值较低,说明动物通过对植被的啃食可能会改变群落的模式,在一定程度上限制磷的摄入。LAI、N、P之间的耦合关系表明了亚高山灌丛群落的LAI在物种组成、放牧和冠层密度上存在差异,但仍然受到N和P的约束。研究结果有利于探索水分限制条件下祁连山灌丛林生态系统植物叶片与养分元素之间关系,对于研究干旱区高寒灌丛生态系统在全球气候变化中的作用及其对全球气候变化的响应与反馈,具有重要的理论价值和实践意义。
Abstract:
As the important life elements in plants, Nitrogen(N)and Phosphorus(P)play important roles in the growth and development of plant communities. In order to clarify the relationship between the leaf area index of subalpine shrub forests in the Qilian Mountains and the canopy N and P, different vegetation types(Dasiphora fruticosa, Caragana jubata, Salix cupularis S. oritrepha)and different grazing treatments were adopted to study. Then the total foliar nitrogen(TFN), total foliar phosphorus(TFP), and the leaf area index(LAI)of subalpine scrub forest communities were compared under different conditions(sheep, yaks, and ungrazed)to find that LAI was strongly correlated with both TFN and TFP across communities, and also within different plant types(Dasiphora fruticosa, Caragana jubata, Salix cupularis S. oritrepha)and grazing treatments(sheep, yaks, and ungrazed). Across almost the entire range of LAI values and contrasting communities, in the TFN:TFP ratios it indicated co-limitation by N and P in almost all communities. However, the increase of LAI, Salix cupularis was and Caragana jubata mainly limited by N and P, respectively, but Dasiphora fruticosa was co-limited by N and P. Under different grazing conditions, the value of TFN corresponding to LAI per unit area was higher and the value of TFP was lower, suggesting that the animal might change the pattern of the community through grazing of vegetation and limit the phosphorus intake to some extent. This relationship between LAI, N and P in subalpine scrub forest suggests where in LAI remains similarly constrained by N and P despite differences in species composition, grazing and canopy density.

参考文献/References:

[1] AERTS R, CHAPIN III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[M]//Advances in Ecological Research. Academic Press, 1999, 30: 1-67.
[2] ELSER J J, BRACKEN M E, CLELAND E E, et al. Global analysis of Nitrogen and Phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135-1142.
[3] FAY P A, PROBER S M, HARPOLE W S, et al. Grassland productivity limited by multiple nutrients[J]. Nature Plants, 2015, 1(7): 15080-15087.
[4] REICH P B, OLEKSYN J, WRIGHT I J. Leaf Phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species[J]. Oecologia, 2009, 160(2): 207-212.
[5] LIU Chao, WANG Yang, WANG Nan, et al. Advances research in plant Nitrogen, Phosphorus and their stoichiometry in terrestrial ecosystems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205-1216.
[6] WALKER A P, BECKERMAN A P, GU Lianhong, et al. The relationship of leaf photosynthetic traits - V-cmax and J(max)- to leaf Nitrogen, leaf Phosphorus, and specific leaf area: a meta-analysis and modeling study[J]. Ecology and Evolution, 2014, 4(16): 3218-3235.
[7] SCHIMEL D S, KITTEL T F, KNAPP A K, et al. Physiological interactions along resource gradients in a tallgrass prairie[J]. Ecology, 1991, 72(2): 672-684.
[8] QUESADA C A, PHILLIPS O L, SCHWARZ M, et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate[J]. Biogeosciences, 2012, 9: 2203-2246.
[9] STEVENS C J, LIND E M, HAUTIER Y, et al. Anthropogenic Nitrogen deposition predicts local grassland primary production worldwide[J]. Ecology, 2015, 96(6): 1459-1465.
[10] KOLLER E K, PRESS M C, CALLAGHAN T V. Tight coupling between shoot level foliar N and P, leaf area, and shoot growth in Arctic dwarf shrubs under simulated climate change[J]. Ecosystems, 2016, 19(2): 326-338.
[11] 于贵瑞,王秋凤,方华军.陆地生态系统碳-氮-水耦合循环的基本科学问题、理论框架与研究方法[J].第四纪研究,2014, 34(4):683-698, 682. [YU Guirui, WANG Qiufeng, FANG Huajun. Fundamental scientific issues, theoretical framework and relative research method of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J]. Quaternary Science, 2014, 34(4): 683-698, 682]
[12] STEFFEN W, RICHARDSON K, ROCKSTROM J A, et al. Planetary boundaries: Guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855.
[13] TURNER C L, BLAIR J M, SCHARTZ R J, et al. Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie[J]. Ecology, 1997, 78(6): 1832-1843.
[14] SEASTEDT T R. Mass, Nitrogen, and Phosphorus dynamics in foliage and root detritus of tallgrass prairie[J]. Ecology, 1988, 69(1): 59-65.
[15] AJWA H A, RICE C W, SOTOMAYOR D. Carbon and Nitrogen mineralization in tallgrass prairie and agricultural soil profiles[J]. Soil Science Society of America Journal, 1998, 62(4): 942-951.
[16] RAYNOR E J, JOERN A, BRIGGS J M. Bison foraging responds to fire frequency in nutritionally heterogeneous grassland[J]. Ecology, 2015, 96(6): 1586-1597.
[17] KOERNER S E, COLLINS S L. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa[J]. Ecology, 2014, 95(1): 98-109.
[18] OWEN D F, WIEGERT R G. Mutualism between grasses and grazers: an evolutionary hypothesis[J]. Oikos, 1981, 36(3): 376-378.
[19] STREET L E, SHAVER G R, RASTETTER E B, et al. Incident radiation and the allocation of Nitrogen within Arctic plant canopies: implications for predicting gross primary productivity[J]. Global Change Biology, 2012, 18(9): 2838-2852.
[20] BORER E T, SEABLOOM E W, GRUNER D S, et al. Herbivores and nutrients control grassland plant diversity via light limitation[J]. Nature, 2014, 508(7497): 517-520.
[21] HAUTIER Y, NIKLAUS P A, HECTOR A. Competition for light causes plant biodiversity loss after eutrophication[J]. Science, 2009, 324(5927): 636-638.
[22] WILLIAMS M, RASTETTER E B. Vegetation characteristics and primary productivity along an Arctic transect: implications for scaling‐up[J]. Journal of Ecology, 1999, 87(5): 885-898.
[23] VAN WIJK M T, WILLIAMS M, SHAVER G R. Tight coupling between leaf area index and foliage N content in Arctic plant communities[J]. Oecologia, 2005, 142(3): 421-427.
[24] SHAVER G R, STREET L E, RASTETTER E B, et al. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden[J]. Journal of Ecology, 2007, 95(4): 802-817.
[25] 车克钧,傅辉恩,王金叶.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998, 34(5):29-37. [CHE Kejun, FU Huien, WANG Jinshe. The structure and function of the water conservation forest ecosystems in Qilian Mountains[J]. Scientia Silvae Sinicae, 1998, 34(5): 29-37]
[26] 车克钧,傅辉恩.祁连山森林,冰川和水资源现状调查研究[J].北京林业大学学报,1998, 20(6):95-99. [CHE Kejun, FU Huien. Investigation on forest, glacier and water resources in the Qilian Mountains[J]. Journal of Beijing Forestry University, 1998, 20(6): 95-99]
[27] 王金叶,王彦辉,王顺利,等.祁连山林草复合流域降水规律的研究[J].林业科学研究,2006, 19(4):416-422. [WANG Jinshe, WANG Yanhui, WANG Shunli, et al. A preliminary study on the precipitation variation of complex watershed on forestry and grasses of Qilian Mountains[J]. Forest Research, 2006, 19(4): 416-422]
[28] 刘贤德,李效雄,张学龙,等.干旱半干旱区山地森林类型的土壤水文特征[J].干旱区地理,2009, 32(5):691-697. [LIU Xiande, LI Xiaoxiong, ZHANG Xuelong, et al. Hydrological characteristics of different forest types of soil in arid and semi-arid mountain[J]. Arid Land Geography, 2009, 32(5): 691-697]
[29] 王金叶. 祁连山水源涵养林生态系统水分传输过程与机理研究[D]. 长沙:中南林业科技大学,2006: 1-189. [Wang Jinye. study of mechanism and process of water transmission on water resource conservation forests ecosystem in Qilian Mountains[D]. Changsha: Central South University of Forestry and Technology, 2006:1-189]
[30] 王金叶,王彦辉,李新,等.祁连山排露沟流域水分状况与径流形成[J].冰川冻土,2006, 28(1):62-69. [WANG Jinye, WANG Yanhui, LI Xin, et al. Water situation and runoff production in the Pailugou Basin of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(1): 62-69]
[31] 常宗强,冯起,吴雨霞,等.祁连山亚高山灌丛林土壤呼吸速率的时空变化及其影响分析[J].冰川冻土,2005, 27(5):666-672. [CHANG Zongqiang, FENG Qi, WU Yuxia, et al. Influence of environmental factors on soil CO2 efflux and its spatial and temporal variations in sub-alpine scrub forest of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2005, 27(5): 666-672]
[32] KLODD A E, NIPPERT J B, RATAJCZAK Z, et al. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities[J]. Oecologia, 2016, 182(3): 889-898.
[33] JOHNSON L C, MATCHETT J R. Fire and grazing regulate belowground processes in tallgrass prairie[J]. Ecology, 2001, 82(12): 3377-3389.
[34] KOERSELMAN W, MEULEMAN A F. The vegetation N:P ratio: a new tool to detect the Nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.
[35] GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
[36] 陈凌云. 添加氮磷对亚高寒草甸金露梅群落各功能群化学计量学特征的影响[D]. 兰州:兰州大学,2010: 1-44. [Chen Linyun. Effects of N, P addition on N:P stoichiometry of different functional groups in Potentilla fruticosa community in a sub-alpine meadow[D]. Lanzhou: Lanzhou University, 2010: 1-44]
[37] ANDERSON R H, FUHLENDORF S D, ENGLE D M. Soil Nitrogen availability in tallgrass prairie under the fire-grazing interaction[J]. Rangeland Ecology & Management, 2006, 59(6): 625-631.
[38] CECH P G, VENTERINK H O, EDWARDS P J. N and P cycling in tanzanian humid savanna: influence of herbivores, fire, and N-2-Fixation[J]. Ecosystems, 2010, 13(7): 1079-1096.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-10-23; 改回日期(Accepted date): 2019-06-28
基金项目(Foundation item):国家自然科学基金项目(41871092); 国家林业和草原局林业生态站监测运行补助项目(2018-LYPT-DW-007)。[National Natural Science Foundation of China(41871092); Subsidies for Monitoring and Operation of Forestry Ecological Station of State Forestry and Grassland Administration(2018-LYPT-DW-007)]
作者简介(Biography):常宗强(1974-),男,甘肃会宁人,研究员,主要研究方向:干旱区生态及碳循环。[CHANG Zongqiang(1974-), male, professor, born in Huining, Gansu province, specialized in arid zone ecology and carbon cycle] E-mail: changzq@lzb.ac.cn
*通讯作者(Corresponding author):王荣新(1974-),男,高级工程师,主要研究方向:干旱区生态。[WANG Rongxin(1974-), male, senior engineer, specialized in arid zone ecology] E-mail: zywangrx@163.com
更新日期/Last Update: 2019-05-30