[1]李天话,樊晓一*,姜元俊.不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究[J].山地学报,2018,(05):740-749.[doi:10.16089/j.cnki.1008-2786.000370]
 LI Tianhua,FAN Xiaoyi*,JIANG Yuanjun.Study on Equivalent Impact Force and Impact Distribution Range of Landslide Debris Flow with Different Gradation[J].Mountain Research,2018,(05):740-749.[doi:10.16089/j.cnki.1008-2786.000370]
点击复制

不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年05期
页码:
740-749
栏目:
山地灾害
出版日期:
2018-09-30

文章信息/Info

Title:
Study on Equivalent Impact Force and Impact Distribution Range of Landslide Debris Flow with Different Gradation
文章编号:
1008-2786-(2018)5-740-10
作者:
李天话1樊晓一12*姜元俊3
1.西南科技大学 土木工程与建筑学院,四川 绵阳 621010; 2.工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621000; 3.中国科学院、水利部成都山地灾害与环境研究所,成都 610041
Author(s):
LI Tianhua1 FAN Xiaoyi12* JIANG Yuanjun3
1.School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China; 2.Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621000, China; 3.Institute
关键词:
滑坡碎屑流 离散元素法 颗粒级配 冲击力分布
Keywords:
landslide debris flow discrete element method particle gradation distribution of impact force
分类号:
P642.22
DOI:
10.16089/j.cnki.1008-2786.000370
文献标志码:
A
摘要:
滑坡碎屑流的冲击是一个持续的,由大量粗细不均匀的碎屑岩粒及粗大块石共同作用的复杂力学冲击过程,冲击压力的大小和分布范围呈现一定的规律变化。以室内物理模型试验的数据为依据,运用三维离散元素法,提出滑体等效冲击力和等效冲击作用位置,探讨不同级配条件下,滑坡碎屑流冲击力的分布特征。结果表明,滑体冲击挡墙的过程可划分为动态冲击阶段和准静态堆积阶段。动态冲击过程中,滑体细颗粒组分摩擦耗能显著,导致滑体冲击力及其作用高度减小; 粒径为20mm及以上粗颗粒间的碰撞作用促进了滑体内部的能量传递,导致滑体冲击力及作用高度增加,峰值冲击力呈分散性分布,峰值冲击力沿竖直高度方向的集中趋势不显著。准静态堆积阶段,挡墙所受接触力主要为后续滑体颗粒冲击能量的碰撞传递及重力分量的累积。滑坡碎屑流滑动带两侧场地条件基本相同的情况下,滑体等效冲击力的水平分布位置主要集中于迎流面中轴线附近,受颗粒级配条件影响较小。
Abstract:
The impact of landslide debris flow is a continuous and complicated mechanical process caused by a large number of debris particles with uneven size gravels and coarse boulders.In the process of movement and impact, the sliding bodies with different particle sizes and compositions occur internal collision, friction, jumping and so on, resulting in a certain regular change in the magnitude and distribution of impact force of landslide debris flow.Therefore, this research has important scientific significance to make up for the deficiencies in the research of landslide debris flow impact structure and to improve the design of impact-resistant structures.Based on the data of indoor physical model tests, the equivalent impact forces and the equivalent impact positions of landslide debris flow were proposed in terms of a three-dimensional discrete element method, and then it discussed the distribution characteristics of impact forces of landslide debris flow under different grading conditions.The results showed that the processes of sliding impacts on retaining wall could be divided into dynamic impact stage and quasi-static accumulation stage.During the dynamic impact process, the friction energy consumption of the fine particle components of a sliding body was significant, resulting in the reduction of impact forces and their acting height.The collisions between coarse particles with a particle size of 20 mm or more promoted the energy transfer inside the sliding body, resulting in the increase of impact force and acting height of a sliding body.The peak impact force was distributed dispersedly, and the concentration trend of the peak impact force along the vertical height direction was not significant.In the quasi-static stacking stage, the contact forces on the retaining wall were mainly the collision transfer of the impact energy of the subsequent sliding particles and the accumulation of gravity components.Under the condition that the topographical conditions on both sides of sliding zones were basically the same, the horizontal distributions of equivalent impact force of sliding body were mainly concentrated near the central axis of the inflow surface and was less affected by particle gradation.

参考文献/References:

[1] 黄润秋,邓荣贵,王士天.高边坡物质运动全过程模拟[M].成都:成都科技大学出版社,1993:29-41 [HUANG Runqiu, DENG Ronggui, ZHANG Zhuoyuan, et a1.Full course numerical simulation of high slope material movement[M].Chengdu:Press of Chengdu University of Science and Technology, l993: 29-41]
[2] 王品,徐则民.头寨大型高速远程滑坡碎屑流堆积体的粒度组成[J].山地学报,2013,31(6):745-752 [WANG Pin, XU Zemin.The grain size composition of touzhai rock-avalanche deposits [J].Mountain Research, 2013, 31(6): 745-752]
[3] 赵晓彦,胡厚田,齐明柱.云南头寨沟大型岩质高速滑坡碰撞模型试验[J].自然灾害学报,2003,12(3):99-103 [ZHAO Xiaoyan, HU Houtian, QI Mingzhu.Model experiment of high speed collision of landslide rock masses in Touzhai Gully, Yunnan[J].Journal of Natural Disasters, 2003, 12(3): 99-103]
[4] 王玉峰,程谦恭,朱圻.汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J].岩石力学与工程学报,2012,31(6):1089-1106 [WANG Yufeng, CHENG Qiangong, ZHU Qi.Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1089-1106]
[5] 樊晓一,杨海龙,田述军,等.滑坡碎屑流运动参数与影响因素敏感度研究[J].山地学报,2016,34(6):724-731 [FAN Xiaoyi, YANG Hailong, TIAN Shujun, et al.Susceptibility degree of factors influence on the movement parameters of landslide-debris avalanches[J].Mountain Research, 2016, 34(6): 724-731]
[6] SASSA K.Landslide volume-apparent friction relationship in the case of rapid loading on alluvial deposits[J].Landslide News, 1992,(6): 16-18
[7] 黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报, 2009,28(6):1239-1249 [HUANG Runqiu.Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1239-1249]
[8] 方华,裴来政,向灵芝.汶川地震高速远程滑坡速度研究[J].防灾减灾工程学报,2011,31(2):212-217 [FANG Hua, PEI Laizheng, XIANG Lingzhi.Study on kinematic velocity of high-speed and long range landslides induced by Wenchuan earthquake[J].Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(2):212-217]
[9] FAN Xiaoyi, TIAN Shujun, ZHANG Youyi.Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation[J].Journal of Mountain Science, 2016, 13(2): 234-245.
[10] 樊晓一,乔建平.“坡”、“场”因素对大型滑坡运动特征的影响[J].岩石力学与工程学报,2010, 29(11):2337-2347 [FAN Xiaoyi, QIAO Jianping.Influence of landslide ground factors on large-scale landslide movement[J].Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11):2337-2347]
[11] 张龙,唐辉明,熊承仁,等.鸡尾山高速远程滑坡运动过程 PFC3D模拟[J].岩石力学与工程学报,2012,31(S1):2601-2611 [ZHANG Long, TANG Huiming, XIONG Chengren, et al.Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D [J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2601-2611]
[12] BI Yuzhang, HE Siming, LI Xinpo, et al.Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures[J].Environmental Earth Sciences, 2016, 75(3):263
[13] GORDON G.D.Zhou, CHARLES W.W.Ng.Numerical investigation of reverse segregation in debris flows by DEM [J].Granular Matter, 2010, 12(5):507-516
[14] JIANG Yuanjun, TOWHATA I.Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J].Rock Mechanics & Rock Engineering, 2013, 46(4):713-729
[15] MORIGUCHI S, BORJA R I, YASHIMA A, et al.Estimating the impact force generated by granular flow on a rigid obstruction[J].Acta Geotechnica, 2009, 4(1):57-71
[16] DIANA S, CLAUDIO T, PIETRO C.Discrete element modeling of debris-avalanche impact on earthfill barriers[J].Physics & Chemistry of the Earth, 2010, 35(3/4/5): 172-181
[17] 胡国明.颗粒系统的离散元素法分析仿真[M].武汉: 武汉理工大学出版社,2010:1-10 [HU Guoming.Analysis and simulation of granular system by discrete element method using EDEM[M].Wuhan: Wuhan University of Technology Press, 2010:1-10]
[18] 徐小敏,凌道盛,陈云敏,等.基于线性接触模型的颗粒材料细-宏观弹性常数相关关系研究[J].岩土工程学报,2010,32(7):991-998[XU Xiaomin, LING Daosheng, CHEN Yunmin, et al.Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model[J].Chinese Journal of Rock Mechanics and Engineering, 2010, 32(7): 991-998]
[19] 韩燕龙,贾富国,唐玉荣,等.颗粒滚动摩擦系数对堆积特性的影响[J].物理学报,2014,63(17):165-171[HAN Yanlong, JIA Fuguo, TANG Yurong, et al.Influence of granular coe?cient of rolling friction on accumulation characteristics[J].Acta Physica Sinica, 2014, 63(17): 165-171]
[20] 樊晓一,田述军,段晓冬,等.地形因子对坡脚型地震滑坡运动参数的影响研究[J].岩石力学与工程学报, 2014,33(S2):4056-4066 [FAN Xiaoyi, TIAN Shujun, DUAN Xiaodong, et al.Study of topography factors influence on motion papameters for seismic slope-toe landsldes[J].Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4056-4066]

相似文献/References:

[1]赵宇,崔鹏,王成华,等.重庆万盛煤矸石山自燃爆炸型滑坡碎屑流成因探讨[J].山地学报,2005,(02):169.
[2]樊晓一,杨海龙,田述军,等.滑坡碎屑流运动参数与影响因素敏感度研究[J].山地学报,2016,(06):724.[doi:10.16089/j.cnki.1008-2786.000179]
 FAN Xiaoyi,YANG Hailong,TIAN Shujun,et al.Susceptibility Degree of Factors Influence on the Movement Parameters of Landslide-Debris Avalanches[J].Mountain Research,2016,(05):724.[doi:10.16089/j.cnki.1008-2786.000179]
[3]李天话,樊晓一*,姜元俊.岩土体颗粒级配对滑坡碎屑流冲击作用的影响研究[J].山地学报,2018,(02):289.[doi:10.16089/j.cnki.1008-2786.000324]
 LI Tianhua,FAN Xiaoyi,JIANG Yuanjun.Influence of Gradation on the Impact Effect of Landslide Debris Flow[J].Mountain Research,2018,(05):289.[doi:10.16089/j.cnki.1008-2786.000324]

备注/Memo

备注/Memo:
收稿日期(Received date):2017-12-20; 改回日期( Accepted date):2018-09-01
基金项目(Foundation item):国家自然科学基金项目(41877524); 中国科学院“率先行动”百人计划资助; 西南科技大学研究生创新基金资助(18ycx088)。[National Natural Science Foundation of China(41877524); The Program of “One Hundred Talented People” of Chinese Academy of Sciences; Postgraduate Innovation Fund Project by Southwest University of Science and Technology(18ycx088)]
作者简介(Biography):李天话(1992-),男,硕士研究生,主要从事岩土工程及地质灾害方面的研究。[LI Tianhua(1992- ), male, M.Sc.candidate, research on geotechnical engineering and geological hazard] E-mail:345527238@qq.com
*通讯作者(Corresponding author):樊晓一(1974-),男,博士,教授,主要从事岩土工程及地质灾害方面的教学与研究工作。[FAN Xiaoyi(1974-), male, professor, Ph.D., research on geological engineering and geological hazard.] E-mail: xyfan1003@126.com
更新日期/Last Update: 2018-11-30