[1]周明慧,熊海贝*,赵书平,等.泥石流冲击力简化计算方法——以舟曲县三眼峪泥石流为例[J].山地学报,2017,(02):187-194.[doi:10.16089/j.cnki.1008-2786.000211]
 ZHOU Minghui,XIONG Haibei*,ZHAO Shuping,et al.Simplified Calculation of Impact Force of Debris Flow Based on the Case Study of Sanyan Valley Debris Flow[J].Mountain Research,2017,(02):187-194.[doi:10.16089/j.cnki.1008-2786.000211]
点击复制

泥石流冲击力简化计算方法——以舟曲县三眼峪泥石流为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年02期
页码:
187-194
栏目:
山地灾害
出版日期:
2017-03-30

文章信息/Info

Title:
Simplified Calculation of Impact Force of Debris Flow Based on the Case Study of Sanyan Valley Debris Flow
文章编号:
1008-2786-(2017)2-187-08
作者:
周明慧1熊海贝1*赵书平2曹纪兴1
1. 同济大学 结构工程与防灾研究所,上海 200092;
2. 甘肃省陇南市地质灾害应急中心,甘肃 陇南 746000
Author(s):
ZHOU Minghui1XIONG Haibei1*ZHAO Shuping2CAO Jixing1
1.Research Institute of Structural Engineering and Disaster Reduction,Tongji University,Shanghai 200092,China;
2.Geological Disaster Emergency Center of Longnan City,Gansu Province,Longnan,746000,China
关键词:
泥石流破坏模式冲击力流体模型简化计算
Keywords:
debris flow failure mode impact fluid model simplified calculation
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000211
文献标志码:
A
摘要:
基于舟曲县三眼峪泥石流灾害的实地考察和资料分析,对该地区常见的夯土木构、砖木结构、砖混结构和框架结构4类典型受损的结构形式进行了分析,确定建筑物的破坏模式主要为淤埋破坏和倒塌破坏。对现有的泥石流冲击作用计算公式进行了分类整理,以三眼峪泥石流实测数据为例对比分析整体冲击力和大石块冲击力的不同计算理论和计算结果。为便于工程技术人员进行房屋抗泥石流设计,提出了基于泥石流深度并考虑泥石流动力效应的设计计算方法,给出了以三眼峪泥石流为例的动力影响系数设计值和设计泥石流深度取值范围;并对当地典型夯土木结构房屋进行了泥石流安全性分析。此简化计算方法物理意义清晰,计算快捷有效,可用于泥石流多发地带的设计荷载计算,其关键参数泥石流深度可根据当地常年记录以统计值采用,动力放大值可根据沟床纵比降和沟床糙率系数确定。
Abstract:
Based on field surveys on Sanyanyu debris flow gully in Zhouqu County and analysis of associated data,in this study it conducted an technical evaluation on performances of local building structures against debris flow. According to damage patterns,four types of house structures were sorted out for demonstration,which were rammed earth-wooden structure,brick-wood structure,brick-concrete structure and frame structure,typically subjected to two principal types of loading modes,either burying by silts or collapsing due to colliding. Comparison was made to examine calculation differences between some of available equations,when actual measurement data collected from the Sanyanyu debris flow were used for calculation of debris flow impact incurred by both debris flow fluid and big boulders floating in debris flow body. Then it analyzed the derivations of these equations and interpreted the corresponding calculation results. For facilitating engineering and technical personnel to design structures with sufficient resistance to debris flow,a proposed equation then was introduced by integrating the depth of debris flow with dynamic effect of debris flow. The suggested expression was readily to set a proper value range for coefficients of dynamic effect and depth of debris flow in practice,and it had been verified by a case study for examining the design of a typical local rammed earth-wooden structure against debris flow in the Sanyanyu.The optimized simplification gave this method good advantages in a better understanding of its physical significance and its higher efficiency in determination of design load in engineered control of debris flow-prone regions. Moreover,it is quite technically feasible for engineers to gain some key prerequisite parameters to use the equation. For example,the value of debris flow depth could be substituted by an average value according to local historic observations. And the values of dynamic effect could be determined by combination of the value of vertical slope of gully bed and the roughness coefficient.

参考文献/References:

[1] 王亚春. 西气东输二线果子沟段自然灾害分析与风险评价[J]. 石油和化工设备,2015(01)26-28[WANG Yachun,Assessment of natural disaster and risk analysis of second tier Guozigou segment of the west east gas pipeline[J]. Petro & Chemical Equipment,2015(01):26-28]
[2] 陈亚宁,李卫红. 新疆干旱区地质灾害区划与减灾对策[J].中国地质灾害与防治学报,1995(4):75-80[CHEN Yaning,Li Weihong. Regionalization of geological hazards and Countermeasures of disaster reduction in arid area of Xinjiang[J]. Journal of geological hazards and control in China,1995(4):75-80].
[3] HUANG Runqiu. Study on the mechanism of typical rock landslide in the west of China[J]. Advance in Earth,2003,23(3):443-450.
[4] 杨发相,岳健,韩志强.新疆公路自然灾害及对策[J].山地学报,2006,24(4):424-430[YANG Faxiang,YUE Jian,HAN Zhiqiang. The natural disasters in Xinjiang and Countermeasures [J]. Journal of Mountain Science,2006,24(4):424-430]
[5] 望远福,蒲荣泽,王晓磊. 国道312线果子沟段滑坡体的岩土勘察及治理研究[J]. 有色金属矿产与勘查; 岩土工程界,2004(06):74-78 [WANG Yuanfu,PU Rongze,WANG Xiaolei. Study on the rock and soil exploration and treatment of the landslide in the 312 line of national highway [J].Geological Exploration for Non-ferrous Metals,2004(06):74-78]
[6] 成永刚.近二十年来国内滑坡研究的现状及动态[J].地质灾害与环境保护,2003,14(4):1-5 [CHENG Yonggang. Current situation and developments of landslide study in china in recent twenty years [J]. Journal of Geological Hazards and Environment Preservation,2003,14(4):1-5].
[7] 成永刚,王玉峰. 我国各省份滑坡贡献率研究[J].铁道工程学报,2012,29(11):5-10[CHENG Yonggang,WANG Yufeng. Study on contribution rate of landslide intensity of each province in china [J]. Journal of Railway Engineering Society,2012,29(11):5-10].
[8] 苏风环,崔鹏,张建强,甘国兵.芦山地震重灾区崩塌滑坡易发性评价[J].山地学报,2013,31(4):502-509[SU Fenghuan,CUI Peng,ZHANG Jianqiang,GAN Guobing. Rockfall and landside susceptibility assessment in Lushan earthquake region [J]. Mountain Research,2013,31(4):502-509.].
[9] 田述军,孔纪名. 基于斜坡单元和公路功能的滑坡风险评价.山地学报,2013,31(5):580-587 [TIAN Shujun,KONG Jiming. Risk assessment of landslide based on slope unit and highway function. Journal of Mountain Research,2013,31(5):580-587]
[10] AKGUN A.,DAG S.,BULUT F. Landslide susceptibility mapping for a landslide prone area(Findikli,NE of Turkey)by likelihood frequency ratio and weighted linear combination models[J]. Environmental Geology,2008,54(6):1127-1143.
[11] AKGUN A. A comparison of landslide susceptibility maps produced by logistic regression,multi-criteria decision,and likelihood ratio methods:a case study at Ä°zmir,Turkey[J]. Landslides. 2012,9(9):93-106.
[12] OZDEMIR A. Landslide susceptibility mapping of vicinity of Yaka Landslide(Gelendost,Turkey)using conditional probability approach in GIS[J]. Environmental Geology,2009,57(7):1675-1686.
[13] OZDEMIR A,ALTURAL T. A comparative study of frequency ratio,weights of evidence and logistic regression methods for landslide susceptibility mapping:Sultan Mountains,SW Turkey[J]. Journal of Asian Earth Sciences,2013,64:180-197.
[14] LEE S.,PRADHAN B. Probabilistic landslide hazards and risk mapping on Penang Island,Malaysia[J]. Journal of Earth System Science. 2006,115(6):661-672.
[15] LEE S.,SAMBATH T. Landslide susceptibility mapping in the Damrei Romelarea,Cambodia using frequency ratio and logistic regression models[J]. Environmental Geology. 2006,50(6):847-855.
[16] RUPERT M G.,CANNON S.H.,GARTNER J.E.,MICHAEL J.A.,HELSEL D.R.,2008. Using logistic regression to predict the probability of debris flows in areas burned by wildfires,Southern California,2003-2006[R]. USGS Open File Report-1370(16 pp.).
[17] TRIGILA Alessandro,IADANZA Carla,ESPOSITO Carlo,et al. Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in giampilieri(nesicily,italy)[J]. Geomorphology,2015,249:119-136.
[18] PRADHAN B.,LEE S. Delineation of landslide hazard areas on Penang Island,Malaysia,by using frequency ratio,logistic regression,and artificial neural network models[J]. Environmental Earth Sciences,2010,60(5):1037-1054.
[19] AYALEW L.,YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,Central Japan[J]. Geomorphology,2005,65(1-2):15-31.
[20] COSTANZO D.,ROTIGLIANO E.,IRIGARAY C.,JIMéNEZ-PERáLVAREZ J.D.,CHACóN J. Factors selection in landslide susceptibility modelling on large scale following the GIS matrix method:application to the river Beiro basin(Spain)[J]. Natural Hazards & Earth System Sciences. 2012,12(2):327-340.
[21] 孙红雨,李兵.中国地表植被覆盖变化及其与气候因子关系[J].遥感学报,1998,2(3):204-210[SHUN Hongyu,LI Bing. Analysis of the vegetation cover change and the relationship between ndvi and environmental factors by using NOAA time series data [J]. Journal of Remote Sensing,1998,2(3):204-210]
[22] DAI F.C.,LEE C.F. Landslide characteristics and slope instability modelling using GIS,Lantau Island,Hong Kong[J]. Geomorphology,2002,42(3-4):213-228.
[23] TIEN BUI D.,PRADHAN B.,LOFMAN O.,REVHAUG I. Landslide susceptibility assessment in Vietnam using support vector machines,decision tree,and Naive Bayes Models[J]. Mathematical Problems in Engineering,2012(6):15-26.

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(02):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(02):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(02):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(02):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(02):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(02):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(02):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(02):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(02):356.
[10]徐伟,倪化勇,王德伟,等.鬼招手滑坡的特征及失稳机制[J].山地学报,2013,(04):418.
 XU Wei,NI Huayong,WANG Dewei,et al.The Basic Characteristics and Instability Mechanism of Guizhaoshou Landslides[J].Mountain Research,2013,(02):418.

备注/Memo

备注/Memo:
基金项目(Foundation item):国家科技支撑计划项目(2014BAL05B01)[National Science and Technology Support Program(2014BAL05B01)]
作者简介(Biography):周明慧(1990-),男,湖南邵阳人,硕士研究生,从事泥石流下结构安全性研究。 [Zhou Minghui(1990-),male,born in Hunan,M.Sc. candidate,research on structural safety under debris flow] E-mail:zmh092764@qq.com
*通信作者(Corresponding author): 熊海贝(1964-),女,上海人,教授,主要从事结构抗震、结构工程监测与检测、木结构工程等。 [Xiong Haibei(1964-),female,born in Shanghai,professor,undertaking research on seismic performance of building structures,structural health monitoring and assessment,timber engineering,etc.] E-mail:xionghaibei@tongji.edu.cn
更新日期/Last Update: 2017-03-30