参考文献/References:
[1] DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands [J]. Nature, 2013, 502(7473): 672-676. DOI: 10.1038/nature12670
[2] BARROW N J. On the reversibility of phosphate sorption by soils [J]. Journal of Soil Science, 1983, 34: 751-758. DOI: 10.1111/j.1365-2389.1983.tb01069.x
[3] BRADSHAW A D. Restoration: The acid test for ecology. [C]// JORDAN W R, GILPIN M E, ABER J D. Restoration ecology: A synthetic approach to ecological research, Cambridge: Cambridge University Press, 1987: 23-29.
[4] LAMBERS H, CAWTHRAY G R, GIAVALISCO P, et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency [J]. New Phytologist, 2012, 196(4): 1098-1108. DOI: 10.1111/j.1469-8137.2012.04285.x
[5] CREWS T E, KITAYAMA K, FOWNES J H, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii [J]. Ecology, 1995, 76(5): 1407-1424. DOI: 10.2307/1938144
[6] CROSS A F, SCHLESINGER W H. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems [J]. Geoderma, 1995, 64(3-4): 197-214. DOI: 10.1016/0016-7061(94)00023-4
[7] WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis [J]. Geoderma, 1976, 15(1): 1-19. DOI: 10.1016/0016-7061(76)90066-5
[8] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157(3): 423-447. DOI: 10.1046/j.1469-8137.2003.00695.x
[9] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. DOI: 10.2307/20456544
[10] HARIPAL K, SAHOO S. Microbial biomass Carbon, Nitrogen, and Phosphorus dynamics along a chronosequence of abandoned tropical agroecosystems [J]. International Journal of Current Microbiology and Applied Sciences, 2014, 3(9): 956-970.
[11] VITOUSEK P M, FARRINGTON H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory [J]. Biogeochemistry, 1997, 37: 63-75. DOI: 10.1023/A:1005757218475
[12] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review [J]. Plant and Soil, 2001, 237(2): 173-195. DOI: 10.1023/A:1013351617532
[13] ZHANG Min, LI Chengliang, LI Y C, et al. Phosphate minerals and solubility in native and agricultural calcareous soils [J]. Geoderma, 2014, 232-234: 164-171. DOI: 10.1016/j.geoderma.2014.05.015
[14] HE Junbo, WU Yanhong, ZHU He, et al. Soil phosphorus fractions dynamics along a 22-ka chronosequence of landslides, western Sichuan, China [J]. Catena, 2024, 235(204): 107674. DOI: 10.1016/j.catena.2023.107674
[15] ZHAO Mengxin, XUE Kai, WANG Feng, et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping [J]. The ISME Journal, 2014, 8(10): 2045-2055. DOI: 10.1038/ismej.2014.46
[16] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems [J]. Ecology Letters, 2007, 10(12): 1135-1142. DOI: 10.1111/J.1461-0248.2007.01113.X
[17] 陈国光, 计凤桔, 周荣军, 等. 龙门山断裂带晚第四纪活动性分段的初步研究[J]. 地震地质, 2007, 29(3): 657-673. [CHEN Guoguang, JI Fengju, ZHOU Rongjun, et al. Primary research of activity segmentation of Longmenshan fault zone since Late-Quaternary [J]. Seismology and Geology, 2007, 29(3): 657-673]
[18] 魏旭, 彭志忠, 刘兴臣, 等. 泸石高速公路沿线历史地震诱发滑坡遥感调查及发育分布规律[J]. 地质科技通报, 2024, 43(2): 386-396. [WEI Xu, PENG Zhizhong, LIU Xingchen, et a1. Remote sensing investigation and development distribution of historical earthquake-induced landslides along Lushi Expressway [J]. Bulletin of Geological Science and Technology, 2024, 43(2): 386-396] DOI: 10.19509/j.cnki.dzkq.tb20220653
[19] 吴俊峰. 大渡河流域重大地震滑坡发育特征与成因机理研究[D]. 成都: 成都理工大学, 2013: 1-135. [WU Junfeng. Research on development characteristics and genetic mechanism of the seismic landslides in Daduhe River [D]. Chengdu: Chengdu University of Technology, 2013: 1-135]
[20] 王晶晶. 基于深度学习的泸定县滑坡隐患识别与易发性评估方法研究[D]. 武汉: 中国地质大学, 2023: 1-130. [WANG Jingjing. Research on deep learning methods for identifying potential landslides and assessing susceptibility in Luding County [D]. Wuhan: China University of Geosciences, 2023: 1-130] DOI: 10.27492/d.cnki.gzdzu.2023.000233
[21] 刘江伟. 大渡河姑咱—得妥河段大型滑坡形成机制及危险性评价研究[D]. 成都: 成都理工大学, 2021: 1-95. [LIU Jiangwei. Study on genetic mechanism and risk assessment of large-scale landslides in the Guza-Detuo section of the Dadu River [D]. Chengdu: Chengdu University of Technology, 2021: 1-95] DOI: 10.26986/d.cnki.gcdlc.2021.000241
[22] 郝晓光, 刘根友, 王世敏, 等. 利用单频实时动态定位技术监测小金县春厂坝滑坡[J]. 科学技术与工程, 2019, 19(19): 8-11. [HAO Xiaoguang, LIU Genyou, WANG Shimin, et al. Monitoring the Chunchang dam landslide in Xiaojin County using single epoch real time kinematic technology [J]. Science Technology and Engineering, 2019, 19(19): 8-11]
[23] 祝浩然. 阿坝州地质灾害演化规律及风险性评价[D]. 成都: 成都理工大学, 2021: 1-89. [ZHU Haoran. Evolution law and risk assessment of geological hazards in Aba Prefecture [D]. Chengdu: Chengdu University of Technology, 2021: 1-89] DOI: 10.26986/d.cnki.gcdlc.2021.001091
[24] 晏鄂川, 刘汉超, 张悼元. 茂汶─汶川段岷江两岸滑坡分布规律[J]. 山地研究, 1998, 16(2): 109-113. [YAN Echuan, LIU Hanchao, ZHANG Zhuoyuan. A study on the distribution regularity of landslide in the Minjiang River between Maowen and Menchuan County [J]. Mountain Research, 1998, 16(2): 109-113]
[25] 柴贺军, 刘汉超. 岷江上游多级多期崩滑堵江事件初步研究[J]. 山地学报, 2002, 20(5): 616-620. [CAI Hejun, LIU Hanchao. Study on landslide damming of river in upper of Mingjiang River [J]. Mountain Research, 2002, 20(5): 616-620] DOI: 10.16089/j.cnki.1008-2786.2002.05.019
[26] 陈理. 四川茂县新磨村高速滑坡启动机理研究[D]. 成都: 西南交通大学, 2015: 1-71. [CHEN Li. Study on the initiation mechanism of Xinmo high-speed rockslide in Mao Xian, Sichuan [D]. Chengdu: Southwest Jiaotong University, 2015: 1-71] DOI: 10.27414/d.cnki.gxnju.2020.000625
[27] 陈鸣明, 松涛. 理县全面排查255个地质灾害点[N]. 四川日报, 2010- 06-26(006). [CHEN Mingming, SONG Tao. A total of 255 geological disaster sites were investigated in Lixian County [N]. Sichuan Daily, 2010- 06-26(006)]
[28] 文静. R语言与GIS支持下的理县滑坡空间分布研究[D]. 绵阳: 西南科技大学, 2015: 1-62. [WEN Jing. Study on the landslide spatial distribution of Lixian County under the support of GIS and R language [D]. Mianyang: Southwest University of Science and Technology, 2015: 1-62]
[29] HEDLEY M J, STEWART J W B. Method to measure microbial phosphate in soils [J]. Soil Biology and Biochemistry, 1982, 14(4): 377-385. DOI: 10.1016/0038-0717(82)90009-8
[30] LOGAH V, SAFO E Y, QUANSAH C, et al. Soil microbial biomass Carbon, Nitrogen and Phosphorus dynamics under different amendments and cropping systems in the semi-deciduous forest zone of Ghana [J]. West African Journal of Applied Ecology, 2010, 17(1): 121-133.
[31] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure [J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. DOI: 10.1016/0038-0717(90)90046-3
[32] GIANFREDA L, RAO M A, PIOTROWSKA A, et al. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution [J]. Science of the Total Environment, 2005, 341(1-3): 265-279. DOI: 10.1016/j.scitotenv.2004.10.005
[33] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand [J]. Soil Biology and Biochemistry, 2007, 39: 1770-1781. DOI: 10.1016/j.soilbio.2007.02.006
[34] TURNER B L, LALIBERTé E. Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich mediterranean shrubland in southwestern Australia [J]. Ecosystems, 2015, 18(2): 287-309. DOI: 10.1007/s10021-014-9830-0
[35] NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. DOI: 10.1016/0016-7037(84)90408-3
[36] DESLIPPE J R, BENTLEY S B. The role of wetland restoration in mediating phosphorus ecosystem services in agricultural landscapes [J]. Current Opinion in Biotechnology, 2025, 91: 103227. DOI: 10.1016/j.copbio.2024.103227
[37] CONANT R T, RYAN M G, AGREN G I, et al. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward [J]. Global Change Biology, 2011, 17(11): 3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x
[38] LI Ye, ZHANG Liping, FANG Shengzuo, et al. Variation of soil enzyme activity and microbial biomass in poplar plantations of different genotypes and stem spacings [J]. Journal of Forestry Research, 2018, 29: 963-972. DOI: 10.1007/s11676-017-0524-2