[1]刘 欢ab,樊晓一bc*,夏贵平b,等.积石山地震触发中川乡液化滑坡—泥流及建筑损毁特征[J].山地学报,2024,(4):546-556.[doi:10.16089/j.cnki.1008-2786.000844]
 LIU Huanab,FAN Xiaoyibc*,XIA Guipingb,et al.Liquefaction Flowslide and Damage Characteristics of Buildings in Zhongchuan Town Triggered by the Jishishan Earthquake[J].Mountain Research,2024,(4):546-556.[doi:10.16089/j.cnki.1008-2786.000844]
点击复制

积石山地震触发中川乡液化滑坡—泥流及建筑损毁特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第4期
页码:
546-556
栏目:
山地灾害
出版日期:
2024-07-25

文章信息/Info

Title:
Liquefaction Flowslide and Damage Characteristics of Buildings in Zhongchuan Town Triggered by the Jishishan Earthquake
文章编号:
1008-2786-(2024)4-546-11
作者:
刘 欢1a1b2樊晓一1b1c*夏贵平1b姜元俊3宋嘉麒1b邓 鑫1b
(1. 西南石油大学 a. 机电工程学院; b.土木工程与测绘学院; c.工程安全评估与防护研究院,成都 610500; 2. 雅安市名山区住房和城乡建设局,四川 雅安 625100; 3. 中国科学院、水利部成都山地灾害与环境研究所,成都 610299)
Author(s):
LIU Huan1a1b2FAN Xiaoyi1b1c*XIA Guiping1bJIANG Yuanjun3SONG Jiaqi1bDENG Xin1b
(1. a. School of Mechanical and Electrical Engineering; b. School of Civil Engineering and Geomatics; c. Institute of Engineering Safety Assessment and Protection, Southwest Petroleum University, Chengdu 610500,China; 2. Housing and Urban-Rural Development Bureau of Mingshan District,Ya'an 625100,Sichuan China; 3. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences and Ministry of Water Resources,Chengdu 610299,China)
关键词:
地震滑坡—泥流 建筑损伤 饱和黄土 冲击 淤埋
Keywords:
earthquake-induced landslide-mudflow building damage saturated loess impact silting
分类号:
P642; TU43
DOI:
10.16089/j.cnki.1008-2786.000844
文献标志码:
A
摘要:
2023年12月18日23时59分,甘肃省临夏州积石山县发生Ms6.2级地震。地震在邻近的民和县中川乡草滩、金田村诱发滑坡—泥流链式灾害,导致20人死亡、19条道路被阻断、65栋居民房屋被冲毁掩埋。本研究采用无人机摄影测量、野外实地调查访问、现场采样分析测试等研究方法,探讨地震滑坡—泥流的基本特征和成因机理; 通过对65份建筑物破坏样本的分析,研究泥流对建筑物的破坏特征和破坏方式。结果表明:(1)该同震地质灾害具有完整的“地震—液化—滑坡—泥流”链式灾害过程,链式末端沟谷型黏性泥流的物源主要为滑源区液化层砂质黄土。(2)地震诱发的地下饱和黄土层液化是滑坡—泥流发生的主要原因,强地震动、饱和黄土层和沟谷地形是发生的主要条件; 填沟造地、农田灌溉、低温冻结导致底部地下水位抬升和下部土体饱和,增加了黄土层液化的可能性。震后,静态液化型滑坡可能持续发生,导致滑坡—泥流面积不断增大。(3)泥流对房屋的动力作用主要表现为冲击和淤埋,并以淤埋作用为主。房屋距泥流主流线越近,其破坏越严重。该区域新建房屋应选择自震周期短、结构整体性好的砖混或框架结构。研究结果可为类似地震次生链式地质灾害的形成机理和防控提供参考。
Abstract:
On December 18, 2023, at 23:59, an Ms6.2 earthquake struck Jishishan County, Linxia Prefecture, Gansu Province, China. At 20 kilomiter from the epicenter, this earthquake triggered a chain of landslide-mudflow in the neighboring Caotan and Jintian Villages of Zhongchuan Town, in Minhe County of Qinghai Province, resulting in 20 fatalities, 19 roads blocked, and 65 residential buildings destroyed and buried.
A team of scientists was promptly assembled and dispatched to the earthquake-affected areas immediately following the tremor. Utilizing Unmanned Aerial Vehicle(UAV)photogrammetry, comprehensive field surveys, and rigorous on-site sampling, the team investigated the underlying causes of the earthquake-induced landslide-mudflow. Additionally, 65 samples of building damages were meticulously collected and analyzed to determine the specific patterns of destruction inflicted by the mudflow.
(1)This secondary geological disaster exemplified a complete chain disaster process: earthquake-liquefaction- landslide-mudflow, featuring a characteristic gully-type viscous mudflow. The primary source of this mudflow stemed from the liquefied sandy loess within the sliding source area.
(2)The liquefaction of saturated loess triggered by the earthquake served as the primary catalyst for the landslide-mudflow. The interaction of strong seismic shaking, saturated loess conditions, and gully topography created an ideal setting for this geohazard. Furthermore, factors such as land reclamation, farmland irrigation, and low-temperature freezing elevated groundwater levels and saturate the lower soil layers, heightening the likelihood of loess liquefaction. It was possible that static liquefaction-induced landslides might kept in the aftermath of the earthquake, potentially leading to a continued expansion of the affected landslide-mudflow area.
(3)The dynamic impact of the landslide-mudflow on buildings was primarily manifested through both impact and silting, with silting being the dominant factor. The closer a building was situated to the main flowslide line, the more severe the damage it was likely to incur. Therefore, it is recommended that new buildings in this region adopt brick-concrete or frame structures, which offer shorter self-seismic periods and superior structural integrity.
These findings provide insights into the formation mechanisms and prevention strategies for similar secondary chain geological disasters induced by earthquakes.

参考文献/References:

[1] 王立朝, 侯圣山, 董英, 等. 甘肃积石山Ms6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报, 2024, 35(3): 108-118. [WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms6.2 earthquake and suggestions for their risk control [J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108-118] DOI: 10.16031/j.cnki.issn.1003-8035.202312026
[2] 李为乐, 许强, 李雨森, 等. 2023年积石山Ms6.2级地震同震地质灾害初步分析[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 33-45. [LI Weile, XU Qiang, LI Yusen, et al. Preliminary analysis of coseismic geohazards induced by the 2023 Jishishan Ms6.2 earthquake [J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2024, 51(1): 33-45] DOI: 10.3969/j.issn.1671-9727.2024.01.04
[3] 张晓超, 裴向军, 张茂省, 等. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报, 2018, 26(5): 1219-1226. [ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake: A case study in Dangjiacha, Ningxia Province [J]. Journal of Engineering Geology, 2018, 26(5): 1219-1226] DOI: 10.13544 /j.cnki.jeg.2018224
[4] WANG Gonghui, ZHANG Dexuan, FURUYA G, et al. Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A case study [J]. Engineering Geology, 2014, 174: 36-45. DOI: 10.1016/j.enggeo.2014.03.006
[5] 王国亚, 任路滨, 吴玮江, 等. 甘肃岷县永光村滑坡特征及其成因研究[J]. 冰川冻土, 2019, 41(2): 392-399. [WANG Guoya, REN Lubin, WU Weijiang, et al. Characteristics and causes of the landslide outbreaking in Yongguangcun, Minxian County, Gansu Province [J]. Journal of Glaciology and Geocryology, 2019, 41(2): 392-399] DOI: 10.7522 /j.issn.1000-0240.2019.0110
[6] WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019, 12: 940-945. DOI: 10.1038/s41561-019-0448-x
[7] WANG Fengrui, FAN Xuanmei, YUNUS A P, et al. Coseismic landslides triggered by the 2018 Hokkaido, Japan(Mw 6.6), earthquake: Spatial distribution, controlling factors, and possible failure mechanism [J]. Landslides, 2019, 16(8): 1551-1566. DOI: 10.1007/s10346-019-01187-7
[8] 李亚军, 岳东霞, 陈冠, 等. 积石山地震诱发金田-草滩村滑坡-泥流灾害链过程与成[J]. 兰州大学学报(自然科学版), 2024, 60(1): 1-5. [LI Yajun, YUE Dongxia, CHEN Guan, et al. A preliminary analysis of the process and cause of the Jintian-Caotan landslide-mudflow hazard chain induced by the Jishishan earthquake [J]. Journal of Lanzhou University(Natural Sciences), 2024, 60(1): 1-5] DOI: 10.13885/j.issn.0455-2059.2024.01.001
[9] 王运生, 赵波, 吉锋, 等. 2023年甘肃积石山Ms6.2级地震震害异常的启示[J]. 成都理工大学学报(自然科学版), 2024, 51(1):1-8. [WANG Yunsheng, ZHAO Bo, JI Feng, et al. Preliminary insights into some hazards triggered by the 2023 Jishishan Ms6.2 earthquake, Gansu Province [J]. Journal of Chengdu University of Technology(Science & Technology Edition). 2024, 51(1): 1-8] DOI: 10.3969/j.issn.1671-9727.2024.01.01
[10] 王兰民, 许世阳, 王平, 等. 2023年积石山6·2级地震诱发大规模黄土液化流滑的特征与启示[J]. 岩土工程学报, 2024, 46(2): 235-243. [WANG Lanmin, XU Shiyang, WANG Ping, et al. Characteristics and lessons of liquefaction-triggered large-scale flow slide in loess deposit during Jishishan Ms6.2 earthquake in 2023 [J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 235-243] DOI: 10.11779/CJGE20240038
[11] 陈文化. 地震液化流滑震害[J]. 自然灾害学报, 2001, 10(4): 88-93. [CHEN Wenhua. Slipping disaster induced by seismic liquefaction [J]. Journal of Natural Disasters, 2001, 10(4): 88-93] DOI: 10.13577/j.jnd.2001.0416
[12] 蒋伟, 王永志, 袁晓铭, 等. 2023年甘肃积石山Ms6.2级地震宏观灾害特征与若干思考[J/OL]. 防灾减灾工程学报, 2024, 44(1): 1-11. [JIANG Wei, WANG Yongzhi, YUAN Xiaoming, et al. Macroscopic hazard characteristics of the 2023 Gansu Jishishan Ms6.2 earthquake and some proposals [J/OL]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(1): 1-11] DOI: 10.13409/j.cnki.jdpme.20240114002
[13] 许强, 彭大雷, 亓星, 等. 2015年4·29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J]. 工程地质学报, 2016, 24(2): 167-180. [XU Qiang, PENG Dalei, QI Xing, et al. Dangchuan 2# landslide of April 29, 2015 in Heifangtai area of Gansu Province: Characteristics and failure mechanism [J]. Journal of Engineering Geology, 2016, 24(2): 167-180] DOI: 10.13544/j.cnki.jeg.2016.02.001
[14] 李碧雄, 赵开鹏, 王甜恬. 西部山区泥石流灾害下建筑物破坏特征与破坏等级划分[J]. 防灾减灾工程学报, 2023, 43(3): 484-493. [LI Bixiong, ZHAO Kaipeng, WANG Tiantian. Damage form and vulnerability analysis of buildings under debris flow impact [J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(3): 484-493] DOI: 10.13409/j.cnki.jdpme.20210522002
[15] 许强, 彭大雷, 范宣梅, 等. 甘肃积石山6.2级地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J/OL]. 武汉大学学报(信息科学版), 2024: 1-18. [XU Qiang, PENG Dalei, FAN Xuanmei, et al. Preliminary study on the characteristics and initiation mechanism of Zhongchuan Town flowslide triggered by Jishishan Ms6.2 earthquake in Gansu Province [J/OL]. Geomatics and Information Science of Wuhan University, 2024: 1-18] DOI: 10.13203/J.whugis20240007
[16] 宿星, 魏万鸿, 张满银, 等. 甘肃积石山强震诱发同震滑坡-泥流灾害链联动耦合致灾效应[J]. 冰川冻土, 2024, 46(3): 1-17. [SU Xing, WEI Wanhong, ZHANG Manyin, et al. The coupling effect of coseismic landslide-mudflow disaster chain induced by Jishishan strong earthquake in Gansu Province [J]. Journal of Glaciology and Geocryology, 2024, 46(3): 1-17]
[17] 胡凯衡, 崔鹏, 葛永刚. 舟曲“8·8”特大泥石流对建筑物的破坏方式[J]. 山地学报, 2012, 30(4): 484-490. [HU Kaiheng, CUI Peng, GE Yonggang. Building destruction patterns by August 8, 2010 debris flow in Zhouqu, western China [J]. Mountain Research, 2012, 30(4): 484-490] DOI: 10.16089/j.cnki.1008-2786.2012.04.020
[18] 雷雨, 崔鹏, 蒋先刚. 泥石流作用下砌体房屋破坏机理和结构优化[J]. 四川大学学报(工程科学版), 2016, 48(4): 61-69. [LEI Yu, CUI Peng, JIANG Xiangang. Failure mechanism and structure optimization of masonry building due to debris flow impact [J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(4): 61-69] DOI: 10.15961/j.jsuese.2016.04.009
[19] FENG Shijin, GAO Hongyu, GAO L, et al. Numerical modeling of interactions between a flow slide and buildings considering the destruction process [J]. Landslides, 2019, 16(10): 1903-1919. DOI: 10.1007/s10346-019-01220-9
[20] 曾超, 崔鹏, 葛永刚, 等. 四川汶川七盘沟“7·11”泥石流破坏建筑物的特征与力学模型[J]. 地球科学与环境学报, 2014, 36(2): 81-91. [ZENG Chao, CUI Peng, GE Yonggang, et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July, 2013 in Qipangou of Wenchuan, Sichuan [J]. Journal of Earth Sciences and Environment, 2014, 36(2): 81-91] DOI: 1672-6561(2014)02-0081-11

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 05-23; 改回日期(Accepted date):2024- 08-19
基金项目(Foundation item): 国家自然科学基金(41877524,42172320,41971214)。[National Nature Science Foundation of China(41877524, 42172320, 41971214)]
作者简介(Biography): 刘欢(1990-),男,四川都江堰人,博士研究生,高级工程师,主要研究方向:防灾减灾工程。[LIU Huan(1990-), male, born in Dujiangyan, Sichuan province, Ph.D. candidate, senior engineer, research on disaster prevention and mitigation engineering] E-mail: 202113000012@stu.swpu.edu.cn
*通讯作者(Corresponding author): 樊晓一(1974-),男,四川双流人,博士,教授,主要研究方向:防灾减灾工程。[FAN Xiaoyi(1974-), male, born in Shuangliu, Sichuan province, Ph.D., professor, research on disaster prevention and mitigation engineering] E-mail:fxy@swpu.edu.cn
更新日期/Last Update: 2024-07-30