[1]程建毅,郭晓军*,李 泳.泥石流物源土体标度分布参数与粘聚力的关系[J].山地学报,2024,(3):401-410.[doi:10-16089/j.cnki.1008-2786.000832]
 CHENG Jianyi,GUO Xiaojun*,LI Yong.Relationship between Soil Scale Distribution Parameters of Debris Flow Source Soils and Cohesive Strength[J].Mountain Research,2024,(3):401-410.[doi:10-16089/j.cnki.1008-2786.000832]
点击复制

泥石流物源土体标度分布参数与粘聚力的关系
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第3期
页码:
401-410
栏目:
山地灾害
出版日期:
2024-05-25

文章信息/Info

Title:
Relationship between Soil Scale Distribution Parameters of Debris Flow Source Soils and Cohesive Strength
文章编号:
1008-2786-(2024)3-401-10
作者:
程建毅12郭晓军1*李 泳1
(1. 中国科学院、水利部成都山地灾害与环境研究所 山地灾害与地表过程重点试验室,成都 610299; 2. 中国科学院大学,北京100049)
Author(s):
CHENG Jianyi12 GUO Xiaojun1* LI Yong1
(1. Key Laboratory of Mountain Hazards and Surface Process, Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610029, China; 2. University of Chinese Academy of Sciences, Beijing 100081,China)
关键词:
土体粘聚力 标度分布 含水率 直剪试验 细颗粒含量
Keywords:
soil cohesion soil scale distribution moisture content direct shear test fine particle content
分类号:
TU431
DOI:
10-16089/j.cnki.1008-2786.000832
文献标志码:
A
摘要:
颗粒级配影响土体力学性质(如粘聚力)。细颗粒(尤其是粘粒)含量对粘聚力起着决定性作用。颗粒级配可用土体特殊粒径(如D50等)来表征,但并不能避免同参异效等问题。采用土体标度分布μ和Dc两个参数,可准确地描述土体颗粒组成特征,但该分布参数的物理意义,以及特征参数与土体力学参数之间的关系尚不明确。本文实施室内试验测试,采用标度分布表征土体颗粒组成,研究在不同含水率和标度参数条件下土体粘聚力的变化特征,探讨土体颗粒组成、含水率和粘聚力之间的关系。结果表明:(1)标度分布参数μ随着细颗粒含量的增加而增大,并呈现指数函数关系;(2)随着细颗粒含量的增加,粘聚力先迅速增大后缓慢增加并趋于稳定,且粘聚力c与标度分布参数μ呈现对数函数关系;(3)粘聚力随着含水率的增大先增大后减小,即存在一个使得土体粘聚力达到最大值的含水率阈值,在达到此阈值之前,细颗粒含量对粘聚力的影响较为显著,达到该阈值之后,含水率成为更主要的影响因素;(4)基于试验结果,得到土体粘聚力随含水率及标度参数共同影响下的二元模型。研究可为明确标度分布参数的物理意义以及确定土体力学参数提供试验依据。
Abstract:
Particle gradation governs soil mechanical properties, e.g., cohesion. The content of fine particles in soils, such as clay content, plays a decisive role in generating cohesive strength of soils. Although soil particle gradation can be characterized by specific grain sizes, e.g., D50, it does not avoid issues in soil mechanics such as soils tagged with the same characteristic particle size but distinct geophysical properties. Antecedent research proposed a soil scale distribution model(SSDM)by two parameters μ and Dc to define soil particle gradation. This model proved to be an acceptable expression of soil particle gradation characteristics, but there was unknown for its geophysical interpretation as well as its relation to soil cohesive strength.
In this study, laboratory tests were conducted to characterize the soil particle graduation using SSDM; the changes in cohesive strength of soil samples were investigated under the conditions of different moisture contents and scale parameters; then geophysical relationship between granularity composition/scale distribution parameter, moisture content and cohesion was carefully concluded.
(1)The scale distribution parameter(μ)increases with the increases of fine particle contents in soils, exhibiting a fine exponential function relationship.
(2)As fine particle content increased, the cohesive strength in soils rapidly increased initially and then gradually stabilized. The relationship between the cohesive strength(c)and the scale parameter (μ) could be quantitatively expressed using a logarithmic function.
(3)The cohesive strength increased first and then decreased with increasing moisture content. There existed a threshold moisture content that maximized the cohesive strength of the soils. Before reaching this threshold, the fine particle contents had a significant impact on the cohesive strength; however, after exceeding the threshold, soil moisture content became the dominant influencing factor.
(4)Based on the experimental results, a binary model for soil cohesive strength with joint influence of moisture content and scale distribution parameters was proposed.
This research can provide scientific basis for geophysical interpretation of soil scale distribution and determination of mechanical parameters for debris flow source soils.

参考文献/References:

[1] GUO Xiaojun, LI Yong, CUI Peng, et al. Intermittent viscous debris flow formation in Jiangjia Gully from the perspectives of hydrological processes and material supply [J]. Journal of Hydrology, 2020, 589: 125184. DOI: 10.1016/j.jhydrol.2020.125184
[2] BELKHATIR M, SCHANZ T, ARAB A. Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures [J]. Environmental Earth Sciences, 2013, 70: 2469-2479. DOI: 10.1007/s12665-013-2289-z
[3] 李涛, 赵洪扬, 翁勃航, 等. 细颗粒形状和含量对钙质混合砂强度的影响试验研究[J]. 岩土工程学报, 2023, 45(7): 1517-1525. [LI Tao, ZHAO Hongyang, WENG Bohang, et al. Experimental study on effects of shape and content of fine particles on strength of calcareous mixed sand [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1517-1525] DOI: 10.11779/CJGE20220535
[4] 王保亮, 李泳, 苟万春, 等. 降雨作用下土体细颗粒迁移特征及其对崩塌的影响[J]. 工程科学与技术, 2017, 49(S2): 40-50. [WANG Baoliang, LI Yong, GOU Wanchun, et al. Fine grain migration and its impact on soil failures under rainfall infiltration [J]. Advanced Engineering Sciences, 2017, 49(S2): 40-50] DOI: 10.15961 /j.jsuese.201600879
[5] 张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202. [ZHANG Chenyang, CHEN Min, HU Mingjian, et al. Effect of fine particles content on shear strength of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202] DOI: 10.16285/j.rsm.2018.1706
[6] 王军, 施静, 刘飞禹, 等. 砂土颗粒级配对格栅-土界面静、动力直剪特性的影响[J]. 岩土力学, 2019, 40(1): 109-117. [WANG Jun, SHI Jing, LIU Feiyu, et al. Effect of particle gradation on static and dynamic direct shear properties of geogrid-sand interface [J]. Rock and Soil Mechanics, 2019, 40(1): 109-117] DOI: 10.16285/j.rsm.2017.1027
[7] 蒋德旺, 崔鹏, 王姣, 等. 细粒含量对冰碛土抗剪强度影响的实验研究[J]. 冰川冻土, 2019, 41(1): 129-139. [JIANG Dewang, CUI Peng, WANG Jiao, et al. Experimental study on the effect of shear strength of moraine soil with fine grain content [J]. Journal of Glaciology and Geocryology, 2019, 41(1): 129-139] DOI: 10.7522 /j.issn.1000-0240.2019.0056
[8] KIM U, KIM D, ZHUANG Li. Influence of fines content on the undrained cyclic shear strength of sand-clay mixtures [J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 124-134. DOI: 10.1016/j.soildyn.2016.01.015
[9] 李泳, 谢江, 周小军, 等. 泥石流颗粒的标度分布[J]. 四川大学学报(工程科学版), 2013, 45(1): 1-7. [LI Yong, XIE Jiang, ZHOU Xiaojun, et al. A scaling distribution for grain composition of debris flow [J]. Journal of Sichuan University(Engineering Science Edition), 2013, 45(1): 1-7] DOI: 10.15961/j.jsuese.2013.01.002
[10] 李泳, 陈晓清, 胡凯衡, 等. 泥石流颗粒组成的分形特征[J]. 地理学报, 2005, 60(3): 495-502. [LI Yong, CHEN Xiaoqing, HU Kaiheng, et al. Fractality of grain composition of debris flows [J]. Acta Geographica Sinica, 2005, 60(3): 495-502]
[11] ZHANG Jun, LI Yong, YANG Taiqiang, et al. A universal grain-size distribution of soil with scaling invariance [J]. European Journal of Soil Science, 2023, 74(2): e13354. DOI: 10.1111/ejss.13354
[12] 李泳, 胡凯衡, 苏凤环, 等. 流域演化与泥石流的系统性——以云南东川蒋家沟为例[J]. 山地学报, 2009, 27(4): 449-456. [LI Yong, HU Kaiheng, SU Fenghuan, et al. Debris flow viewed from the basin evolution: A case study of Jiangjia Gulley, Yunnan [J]. Mountain Research, 2009, 27(4): 449-456]
[13] 李泳, 苟万春, 王保亮, 等. 颗粒组成与泥石流运动的涨落[J]. 山地学报, 2016, 34(4): 468-475. [LI Yong, GOU Wanchun, WANG Baoliang, et al. Grain composition and the fluctuation of debris flow motion [J]. Mountain Research, 2016, 34(4): 468-475] DOI: 10.16089/j.cnki.1008-2786.000152
[14] GB/T 50123-2019. 土工试验方法标准[S]. 北京: 中国计划出版社, 2019. [GB/T 50123-2019. Standard for getechnical testing method [S]. Beijing: China Planning Press, 2019]
[15] LI Yong, ZHOU Xiaojun, SU Pengcheng, et al. A scaling distribution for grain composition of debris flow [J]. Geomorphology, 2013, 192: 30-42. DOI: 10.1016/j.geomorph.2013.03.015
[16] 丁一, 冀卫东, 王旭东. 颗粒级配对混合土力学性质影响的试验研究[J]. 南京工业大学学报(自然科学版), 2018, 40(1): 127-132. [DING Yi, JI Weidong, WANG Xudong. Experimental study on effects of grain size distribution on mechanical properties of mixed soil [J]. Journal of Nanjing Tech University(Natural Science Edition), 2018, 40(1): 127-132] DOI: 10.3969 /j.issn.1671-7627.2018.01.020
[17] PAPADOPOULOU A I, TIKA T M. The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands [J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 191-206. DOI: 10.1016/j.soildyn.2016.04.015
[18] PAPADOPOULOU A, TIKA T. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands [J]. Soils and Foundations, 2008, 48(5): 713-725. DOI: 10.3208/sandf.48.713
[19] AHMAD W, TARO U, MUHAMMAD U. Effect of the optimum and residual moisture content on the strength characteristics of unsaturated sands[C]// E3S Web of Conferences, 2023, 382: 02007. DOI: 10.1051/e3sconf/202338202007
[20] GUO Zekun, ZHANG Zizhao, MU Yanxiao, et al. Effect of freeze-thaw on mechanical properties of loess with different moisture content in Yili, Xinjiang [J]. Sustainability, 2022, 14(18): 11357. DOI: 10.3390/su141811357
[21] ABDI M, MALEKI M, CHALI E. Investigation of the critical state behavior of unsaturated silty sand with different fine contents in terms of net and effective stresses [J]. European Journal of Environmental and Civil Engineering, 2024, 28(6): 1332-1353. DOI: 10.1080/19648189.2023.2252906
[22] CHANG C S, YIN Zhenyu. Micromechanical modeling for behavior of silty sand with influence of fine content [J]. International Journal of Solids and Structures, 2011, 48(19): 2655-2667. DOI: 10.1016/j.ijsolstr.2011.05.014

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 03- 07; 改回日期(Accepted date):2024- 05-28
基金项目(Foundation item): 第二次青藏高原综合科学考察研究项目(2019QZKK0903-02); 国家自然科学基金(42322703)。[The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0903-02); National Natural Science Foundation of China(42322703)]
作者简介(Biography): 程建毅(1999-),男,湖北襄阳人,硕士研究生,主要研究方向:岩土工程。[CHENG Jianyi(1999-), male, born in Xiangyang, Hubei province, M.Sc. candidate, research on geotechnical engineering] E-mail: chjy@imde.ac.cn
*通讯作者(Corresponding author): 郭晓军(1985-),男,山西运城人,博士,研究员,主要研究方向:泥石流。[GUO Xiaojun(1985-), male, born in Yuncheng, Shanxi province, Ph.D., professor, research on debris flow] E-mail: aaronguo@imde.ac.cn
更新日期/Last Update: 2024-05-30