[1]樊晓一a,b,夏贵平a,等.偏转地形约束条件下滑坡-碎屑流运动速度与颗粒分布的试验研究[J].山地学报,2024,(3):389-400.[doi:10.11975/j.issn.1002-6819.2019.03.029 ]
 FAN Xiaoyia,b,XIA Guipinga,et al.An Experimental Study on the Velocity and Particle Distribution of Landslide-Debris Flow Motion under Deflected Terrain Constraints[J].Mountain Research,2024,(3):389-400.[doi:10.11975/j.issn.1002-6819.2019.03.029 ]
点击复制

偏转地形约束条件下滑坡-碎屑流运动速度与颗粒分布的试验研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第3期
页码:
389-400
栏目:
山地灾害
出版日期:
2024-07-28

文章信息/Info

Title:
An Experimental Study on the Velocity and Particle Distribution of Landslide-Debris Flow Motion under Deflected Terrain Constraints
文章编号:
1008-2786-(2024)3-389-12
作者:
樊晓一ab夏贵平ac温 翔a徐奕梓a刘浩南a
(西南石油大学 a.土木工程与测绘学院; b.工程安全评估与防护研究院; c.机电工程学院,成都 610500)
Author(s):
FAN XiaoyiabXIA GuipingacWEN XiangaXU YiziaLIU Haonana
(a. School of Civil Engineering and Geomatics; b. Institute of Engineering Safety Assessment and Protection; c. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China)
关键词:
偏转地形 滑坡-碎屑流 模型试验 运动速度 颗粒分布
Keywords:
deflection terrain landslide-debris flow model test velocity gradation
分类号:
P642
DOI:
10.11975/j.issn.1002-6819.2019.03.029
文献标志码:
A
摘要:
滑坡-碎屑流在行进中受到侧向地形约束与挤压,运动方向发生偏转,侧蚀、侧向冲击或掩埋原低风险分区内的建筑结构。偏转地形约束条件下滑坡-碎屑流致灾参数分布演化特征及过程,包括运动速度、堆积分布、颗粒分选等的分析与反演是有效防控此类地质灾害的前提与基础。前期滑坡-碎屑流模型试验较少考虑其在受地形偏转作用影响下的运动特征,结果与实际观测不符。本文以典型滑坡碎屑流为原型,改进模型试验装置,采用物理模型试验,探究偏转点前后碎屑流运动速度和颗粒分布变化。研究结果表明:(1)碎屑流的运动速度在偏转点显著下降,并在偏转点后急剧增加并达到峰值,呈现出急加速、波动加速、地形偏转作用导致的速度剧烈下降、运动堆积区的逐渐下降、堆积停滞区的快速下降五个变化阶段。(2)滑坡碎屑流最大堆积厚度位于偏转点之后。(3)碎屑流大、小颗粒在堆积体表层、下层的质量占比分别为50.7%、65.1%,呈现明显的颗粒分选特征。在沿碎屑流运动的纵向和横向方向上,不同粒径的质量占比在偏转点附近与初始状态一致。沿纵向方向上,大颗粒质量占比呈现短距离减小分布,而后随运动距离的增加,质量占比增大,由初始状态的28.3%增大到49.6%; 而小颗粒的质量占比则呈现先增加后减小的分布特征,由初始状态的44.0%减小到23.5%; 在横向方向上,两侧大颗粒的质量占比大于中部,而小颗粒则相反。研究结果可以为受偏转地形作用的滑坡-碎屑流致灾参数演化和灾害防御提供参考。
Abstract:
Constrained and squeezed by lateral protruding terrain during traveling, landslide-debris flows veer off initial kinetic energy direction, occurring lateral eroding, striking or burying the building structures previously evaluated as in the original low-risk zone. This kind of geo-hazard needs to be comprehensively investigated for key geophysical parameter evolutions during the movement, including velocity, composition and gradation, and it is prerequisite for a proper geotechnical control of the geo-disaster.
Preceding research on landslide-debris flows seldom addressed the movement behaviors under the influence of topographic deflection, quite possibly due to the big challenge of experimental modeling; therefore, these previous research outputs were without practical significance.
In this study, it conducted an improved geo-physical model test to mimic a typical landslide-debris flow. The changes of particle velocity and gradation of landslide-debris were tracked before and after a topographic deflection point and the influence of deflected terrain on the particle movement and accumulation was examined.
(1)The velocity of landslide-debris flows decreased significantly at the topographic deflection point and increased sharply to the peak immediately after the point. The movement process of landslide-debris flows consisted of five stages, including rapid accelerating, fluctuated accelerating, intense decelerating due to the deflection topography, gradual decreasing in the moving-accumulation area, and rapid decreasing in the stagnation area.
(2)Landslide-debris flow occurred the maximum deposition after arriving at the topographic deflection point.
(3)In the accumulation area, the mass ratio of large particles and small particles of landslide-debris flow was 50.7% at the upper layer and 65.1% at the bottom layer, respectively, indicating an obvious particle sorting phenomenon. In the longitudinal and transverse profile along the movement of landslide-debris flow, the mass share of different particle sizes was consistent with the initial state near the deflection point. In the longitudinal profile, the mass share of large particles decreased in a short distance, and then increased with the increase of movement distance, from 28.3% in the initial state to 49.6% in the final; Comparatively, the mass share of small particles increased first and then decreased, from 44.0% in the initial state to 23.5% in the final; along the transverse prefile, the mass share of large particles on the two sides was greater than those in the middle, whereas the opposite was true for small particles.
The study provides an insight into the evolution of key geophysical parameter of landslide-debris flow under the action of deflection terrain, and provides a reference to geo-hazard control.

参考文献/References:

[1] 许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009, 17(4): 433-444. [XU Qiang, HUANG Runqiu, YIN Yueping, et al. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism [J]. Journal of Engineering Geology, 2009, 17(4): 433-444] DOI: 10.3969/j.issn.1004-9665.2009.04.001
[2] 孔纪名, 田述军, 阿发友, 等. 贵州关岭“6.28”特大滑坡特征和成因[J]. 山地学报, 2010, 28(6): 725-731. [KONG Jiming, TIAN Shujun, A Fayou, et al. Guizhou Guanling landslide formation mechanism and its characteristics [J]. Mountain Research, 2010, 28(6): 725-731] DOI: 10.16089/j.cnki.1008-2786.2010.06.011
[3] 殷跃平, 刘传正, 陈红旗, 等. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J]. 工程地质学报, 2013, 21(1): 6-15. [YIN Yueping, LIU Chuanzheng, CHEN Hongqi, et al. Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong county, Yunnan province [J]. Journal of Engineering Geology, 2013, 21(1): 6-15] DOI: 1004-9665/2013/21(1)-0006-10
[4] PEI Xiangjun, CUI Shenghua, ZHU Ling, et al. Sanxicun landslide: An investigation of progressive failure of a gentle bedding slope [J]. Natural Hazards, 2021, 111: 51-78. DOI: 10.1007/s11069-021-05044-6
[5] GE Yunfeng, ZHOU Ting, TANG Huiming, et al. Influence of the impact angle on the motion and deposition of granular flows [J]. Engineering Geology, 2020, 275: 105746. DOI: 10.1016/j.enggeo.2020.105746
[6] LI Yan, HU Wei, ZHOU Li, et al. Influence of soil density on the solid-to-fluid phase transition in flowslide flume experiments [J]. Engineering Geology, 2023, 313: 106964. DOI: 10.1016/j.enggeo.2022.106964
[7] 周月, 廖海梅, 甘滨蕊, 等. 滑坡运动冲击破碎物理模型试验研究[J]. 岩石力学与工程学报, 2020, 39(4): 726-735. [ZHOU Yue, LIAO Haimei, GAN Binrui, et al. Physical modeling test on impacting fragmentation during landslide moving [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 726-735] DOI: 10.13722/j.cnki.jrme.2019.0850
[8] YANG Hailong, PEI Xiangjun, FAN Xiaoyi, et al. Experimental investigation of the mobility and deposit characteristics of laterally confined rock avalanches [J]. Bulletin of Engineering Geology and the Environment, 2023, 82: 192-203. DOI:10.1007/s10064-023-03191-7
[9] 王佳佳, 陈浩军, 肖莉丽, 等.滑坡碎屑流运动堆积特征与能量耗散规律[J/OL].哈尔滨工业大学学报, 2024: 1-11. [WANG Jiajia, CHEN Haojun, XIAO Lili, et al. Motion and accumulation characteristics and energy dissipation law of landslide-debris flow [J/OL]. Journal of Harbin Institute of Technology, 2024: 1-11] DOI: 10.11918/202310045
[10] BASELT I, OLIVEIRA G Q, FISCHER J T, et al. Evolution of stony debris flows in laboratory experiments [J]. Geomorphology, 2021, 372: 107431. DOI: 10.1016/j.geomorph.2020.107431
[11] WU Yanbin, DUAN Zhao, PENG Jianbing, et al. Implications of sand grains mobility and inundating area to landslides at different slope angles [J]. Granular Matter, 2024, 26: 18-29. DOI: 10.1007/s10035-023-01387-y
[12] 赵运会, 樊晓一. 基于正交设计的滑坡运动参数模型试验[J]. 山地学报, 2016, 34(1): 92-99. [ZHAO Yunhui,FAN Xiaoyi. Model test of movement parameters of landslide based on orthogonal design [J]. Mountain Research, 2016, 34(1): 92-99] DOI: 10.16089/j.cnki.1008-2786.000105
[13] SCHEIDL C, MCARDELL B W, RICKENMANN D. Debris-flow velocities and superelevation in a curved laboratory channel [J]. Canadian Geotechnical Journal, 2015, 52(3): 305-317. DOI: 10.1139/cgj-2014-0081
[14] 杜国梁, 张永双, 姚鑫, 等. 都江堰市五里坡高位滑坡-碎屑流成因机制分析[J]. 岩土力学, 2016, 37(S2): 493-501. [DU Guoliang, ZHANG Yongshuang, YAO Xin, et al. Formation mechanism analysis of Wulipo landslide-debris flow in Dujiangyan city [J]. Rock and Soil Mechanics, 2016, 37(S2): 493-501] DOI: 10.16285/j.rsm.2016.S2.064
[15] VALENTINO R, BARLA G, MONTRASIO L. Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests [J]. Rock Mechanics and Rock Engineering, 2008, 41: 153-177. DOI: 10.1007/s00603-006-0126-3
[16] 梁京涛, 成余粮, 王军, 等. 2013年7月10日四川省都江堰三溪村五里坡特大滑坡灾害遥感调查及成因机制浅析[J]. 工程地质学报, 2014, 22(6): 1194-1203. [LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Remote sensing investigation and formation mechanism on Wulipo landslide of July 10, 2013 in Sanxi village, Dujiangyan, Sichuan province [J]. Journal of Engineering Geology, 2014, 22(6): 1194-1203] DOI: 10.13544/j.cnki.jeg.2014.06.025
[17] 温铭生, 方志伟, 王阳谷. 都江堰市五里坡特大滑坡灾害特征与致灾成因[J]. 现代地质, 2015, 29(2): 448-453. [WEN Mingsheng, FANG Zhiwei, WANG Yanggu. Characteristics and disaster causes of Wulipo landslide in Dujiangyan city [J]. Geoscience, 2015, 29(2): 448-453] DOI: 10.3969/j.issn.1000-8527.2015.02.032
[18] MANCARELLA D, HUNGR O. Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers [J]. Canadian Geotechnical Journal, 2010, 47(8): 827-841. DOI: 10.1139/T09-143
[19] 殷志强, 徐永强, 赵无忌. 四川都江堰三溪村“7·10”高位山体滑坡研究[J]. 工程地质学报, 2014, 22(2): 309-318. [YIN Zhiqiang, XU Yongqiang, ZHAO Wuji. Sanxi viliage landslide in Dujiangyan, Sichuan province on July 10, 2013 [J]. Journal of Engineering Geology, 2014, 22(2): 309-318] DOI: 10.13544/j.cnki.jeg.2014.02.018
[20] YIN Yueping, CHENG Yuliang, LIANG Jingtao, et al. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake [J]. Landslides, 2016, 13: 9-23. DOI: 10.1007/s10346-015-0554-9
[21] FAN Xiaoyi, TIAN Shujun, ZHANG Youyi. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation [J]. Journal of Mountain Science, 2016, 13(2): 234-245. DOI: 10.1007/s11629-014-3396-3

相似文献/References:

[1]夏式伟,郑昭炀,袁小一,等.芦山地震汤家沟滑坡-碎屑流过程模拟[J].山地学报,2017,(04):527.[doi:10.16089/j.cnki.1008-2786.000250]
 XIA Shiwei,ZHENG Zhaoyang,YUAN Xiaoyi,et al.Dynamic Simulation of Tangjia Valley Rock Avalanche in Tianquan, Sichuan, China[J].Mountain Research,2017,(3):527.[doi:10.16089/j.cnki.1008-2786.000250]

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 04- 02; 改回日期(Accepted date):2024- 06-19
基金项目(Foundation item): 国家自然科学基金(41877524)。[National Natural Science Foundation of China(41877524)]
作者简介(Biography): 樊晓一(1974-),男,博士,教授。主要研究方向:地质灾害防灾减灾。[FAN Xiaoyi(1974-), male, Ph.D., professor, research on prevention and reduction of geological disaster]E-mail:fxy@swpu.edu.cn
更新日期/Last Update: 2024-05-30