[1]陈伯洲,胡建华*,吴 威,等.白龙江流域不同植被类型修复模式下土壤理化性质与边坡稳定性[J].山地学报,2024,(2):260-277.[doi:10.16089/j.cnki.1008-2786.000821]
 CHEN Bozhou,HU Jianhua*,WU Wei,et al.Physicochemical Properties of Soil under Restoration of Different Vegetation Types and Resulting Slope Stability in the Bailong River Basin, China[J].Mountain Research,2024,(2):260-277.[doi:10.16089/j.cnki.1008-2786.000821]
点击复制

白龙江流域不同植被类型修复模式下土壤理化性质与边坡稳定性
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第2期
页码:
260-277
栏目:
山地灾害
出版日期:
2024-06-15

文章信息/Info

Title:
Physicochemical Properties of Soil under Restoration of Different Vegetation Types and Resulting Slope Stability in the Bailong River Basin, China
文章编号:
1008-2786-(2024)2-260-18
作者:
陈伯洲胡建华*吴 威刘橼锰邓茹月
(福州大学 紫金地质与矿业学院,福州 350116)
Author(s):
CHEN Bozhou HU Jianhua* WU Wei LIU Yuanmeng DENG Ruyue
(School of Zijin Geology and Mining, Fuzhou University, Fuzhou 350116, China)
关键词:
植被修复 抗剪强度 土壤粒度 团聚体 粘土矿物 边坡稳定性 白龙江流域
Keywords:
vegetation restoration shear strength soil particle size soil aggregate clay minerals slope stability the Bailong River basin
分类号:
P694
DOI:
10.16089/j.cnki.1008-2786.000821
文献标志码:
A
摘要:
植被修复是边坡生态治理的有效手段。目前,植被对边坡稳定性影响的研究侧重在根系的锚固作用,而有关植被对土壤物理化学性质的影响所导致的土体边坡稳定性的变化研究比较少。本研究以白龙江流域滑坡区植被修复林地、灌木-草地、草地与裸地为研究对象,测量了修复14年后不同植被类型下土壤的基本物理化学特性与力学特性,主要分析了粒度、团聚体、土壤矿物等理化性质与抗剪强度的关系,并通过数值模拟软件综合对比了不同植被修复模式下土体的边坡稳定性。得到了以下结果:(1)植被修复可以显著改变土壤的物理化学性质,灌木-草地相对于其他两种修复模式可以明显提升细颗粒(黏粒、粉粒)和粘土矿物的含量,林地对土壤团聚体形成的促进效果最好。(2)土壤的平均重量直径越大,内摩擦角越大,细颗粒的含量与粘聚力呈高度拟合的指数关系(R2=0.99)。粘土矿物含量与土壤粘聚力呈正相关。(3)经过14年的修复,不同植被修复模式下土体的边坡稳定性都得到了一定程度的提升,其中灌木-草地群落对土体边坡稳定性的加强效果最好。极端降雨条件下,边坡稳定性安全系数从大到小依次为灌木-草地(3.20~2.58)、林地(3.03~2.44)、草地(2.91~2.41)、裸地(2.68~2.25)。本研究有助于加强对不同植被类型对土体边坡稳定性的作用机制的认识,也可为该区域植被修复模式提供一定的建议。
Abstract:
Vegetation restoration is an effective means of ecological control of unstable slopes. Although past research elaborated the anchoring effects of vegetation root systems on stabilizing unstable slopes, most studies neglected the influence of vegetation on the physicochemical properties of soil with the subsequent changes in slope stability.
In this study, lands including woodland, shrub-grassland, grassland and bare land in a landslide area of the Bailong River basin, Gansu province, China, were selected for examining the changes in fundamental physicochemical and mechanical properties of soils under restoration of different vegetation types after fourteen years of artificial rearing. The relationships between physicochemical properties such as particle size, aggregates, soil minerals and shear resistance were analyzed, and the slope stability of soil bodies under different vegetation restoration was comprehensively compared by numerical simulation software.
(1)Vegetation restoration significantly changed the physicochemical properties of soil. The mode of shrub-grassland planting can significantly enhanced the content of fine particles(clay and silt)and clay minerals in slope soil relative to the other two restoration modes of woodland and grassland planting, and the woodland planting had the best effect on promoting the formation of soil macroaggregates.
(2)An increase in the mean weight diameter(MWD)of soil resulted in a greater internal friction angle(φ). There was an exponential relationship between fine particle content and soil cohesion(R2=0.99). Furthermore, the clay mineral content fitted a positive correlation with soil cohesion(c).
(3)After fourteen years of restoring, the restoration of land with different types of vegetation, led to an improvement in slope stability to a certain extent. Among the different types of vegetation, the shrub-grassland community was found to be the most effective at enhancing soil slope stability. Under extreme rainfall conditions, the factor of safety(FoS)for slope stability was highest in the shrub-grasslands(3.20-2.58), followed by woodlands(3.03-2.44), grasslands(2.91-2.41), and bare lands(2.68-2.25).
This study would help to promote the understanding of the mechanism of vegetation planting on slope stability and may also provide suggestions for vegetation restoration model selection in the study area.

参考文献/References:

[1] FAIZ H, NG S, RAHMAN M. A state-of-the-art review on the advancement of sustainable vegetation concrete in slope stability [J]. Construction and Building Materials, 2022, 326: 126502. DOI: 10.1016/J.CONBUILDMAT.2022.126502
[2] WANG Xia, HONG Miaomiao, HUANG Zheng, et al. Biomechanical properties of plant root systems and their ability to stabilize slopes in geohazard-prone regions [J]. Soil and Tillage Research, 2019, 189: 148-157. DOI: 10.1016/j.still.2019.02.003
[3] 李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展[J]. 中国科学: 地球科学, 2022, 52(11): 2105-2138. [LI Zhongkai, LI Xiaoyan, ZHOU Sha, et al. A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances [J]. Science China: Earth Sciences, 2022, 52(11): 2105-2138] DOI: 10.1360/N072021-0358
[4] HINSINGER P, BENGOUGH A G, VETTERLEIN D, et al. Rhizosphere: Biophysics, biogeochemistry and ecological relevance [J]. Plant and Soil, 2009, 321(1/2): 117-152. DOI: 10.1007/s11104-008-9885-9
[5] XIA Jiangbao, REN Ranran, CHEN Yinping, et al. Multifractal characteristics of soil particle distribution under different vegetation types in the Yellow River Delta chenier of China [J]. Geoderma, 2020, 368: 114311. DOI: 10.1016/j.geoderma.2020.114311
[6] ZHANG Yaohua, XU Xianli, LI Zhenwei, et al. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China [J]. Science of the Total Environment, 2019, 650: 2657-2665. DOI: 10.1016/j.scitotenv.2018.09.372
[7] 洪苗苗. 浅层滑坡多发区不同乔木根系对坡体稳定性影响研究[D]. 兰州: 兰州大学, 2018: 54-55. [HONG Miaomiao. Effect of arbors root systems to stabilize slope in a geological hazard-prone region [D]. Lanzhou: Lanzhou University, 2018: 54-55]
[8] LI Jia, WANG Xia, JIA Haixia, et al. Effect of herbaceous plant root density on slope stability in a shallow landslide-prone area [J]. Natural Hazards, 2022, 112: 2337-2360. DOI: 10.1007/S11069-022-05268-0
[9] 柳洋. 陇中黄土丘陵区不同林龄刺槐林根系特征及边坡稳定性研究[D]. 兰州: 兰州大学, 2021: 10-11. [LIU Yang. Research on the root system characteristics and slope stability of Robinia Pseudoacacia L. forests with different stand ages in the loess hilly area of central Gansu [D]. Lanzhou: Lanzhou University, 2021: 10-11] DOI: 10.27204/d.cnki.glzhu.2021.002518
[10] 安然, 柴军瑞, 覃源, 等. 植被根系形态对边坡稳定性的影响分析[J]. 水利水电技术, 2018, 49(3): 150-156. [AN Ran, CHAI Junrui, QIN Yuan, et al. Analysis of the influence of vegetation root-system morphology on slope stability [J]. Water Resources and HydropowerEngineering, 2018, 49(3): 150-156] DOI: 10.13928/j.cnki.wrahe.2018.03.022
[11] 魏玉杰, 吴新亮, 皮江平, 等. 土沙混合对土壤粒度分维值及物理特性的影响[J]. 中国水土保持科学, 2013, 11(6): 74-80. [WEI Yujie, WU Xinliang, PI Jiangping, et al. Fractal dimension and physical characteristics of clay-sand mixtures [J]. Science of Soil and Water Conservation, 2013, 11(6): 74-80] DOI: 10.16843/j.sswc.2013.06.012
[12] ZHANG Yue, ZHONG Xiaoyan, LIN Jinshi, et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China [J]. Geomorphology, 2020, 351: 106956. DOI: 10.1016/j.geomorph.2019.106956
[13] ZHANG Baojun, ZHANG Guanghui, YANG Hanyue, et al. Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China [J]. Catena, 2019, 173: 375-383. DOI: 10.1016/j.catena.2018.10.036
[14] 何蕾. 矿物成分与水化学成分对粘性土抗剪强度的控制规律及其应用[D]. 北京: 中国地质大学(北京), 2014: 125-126. [HE Lei. Impact of mineralogical composition and water chemistry on shear strength of clay and its application [D]. China University of Geosciences(Beijing), 2014: 125-126]
[15] WANG Ren, SHI Wanzhong, XIE Xiangyang, et al. Clay mineral content, type, and their effects on pore throat structure and reservoir properties: Insight from the Permian tight sandstones in the Hangjinqi area, north Ordos Basin, China [J]. Marine and Petroleum Geology, 2020, 115: 104281. DOI: 10.1016/j.marpetgeo.2020.104281
[16] 洪苗苗, 汪霞, 赵云飞, 等. 浅层滑坡多发区典型植被恢复树种根系对土壤抗剪强度影响[J]. 山地学报, 2018, 36(1): 107-115. [HONG Miaomiao, WANG Xia, ZHAO Yunfei, et al. Effects of ecological restoration plants root on slope reinforcement in shallow landslide prone region [J]. Mountain Research, 2018, 36(1): 107-115] DOI: 10.16089/j.cnki.1008-2786.000306
[17] 何斌, 徐新兰, 贾贵义, 等. 甘肃省白龙江流域主要地质灾害发育特征及分布规律研究[J]. 地下水, 2017, 39(3): 174-176+179. [HE Bin, XU Xinlan, JIA Guiyi, et al. Characteristics and distribution of main geological hazards in Gansu Bailongjiang River Basin [J]. Groundwater, 2017, 39(3): 174-176+179]
[18] WANG Xia, WANG Kaichang, DENG Tao, et al. Contribution of soil matric suction on slope stability under different vegetation types [J]. Journal of Soils and Sediments, 2023, 24(2): 575-588. DOI: 10.1007/s11368-023-03653-1
[19] 孟兴民, 陈冠, 郭鹏, 等. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质, 2013, 33(4): 1-15. [MENG Xingmin, CHEN Guan,GUO Peng,et al. Research of landslides and debris flows in Bailong River basin: Progress and prospect [J]. Marine Geology and Quaternary Geology, 2013, 33(4): 1-15] DOI: 10.3724/SP.J.1140.2013.04001
[20] KEEFER D K, LARSEN M C. Assessing landslide hazards [J]. Science, 2007, 316: 1136-1138. DOI: 10.1126/science.1143308
[21] 李佳, 汪霞, 贾海霞, 等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响[J]. 生态学报, 2019, 39(14): 5117-5126. [LI Jia, WANG Xia, JIA Haixia, et al. Ecological restoration with shrub roots forslope reinforcement in a shallow landslide-prone region [J]. Acta Ecologica Sinica, 2019, 39(14): 5117-5126] DOI: 10.5846 /stxb201809141986
[22] 赵振勇, 周春儿, 曹喜仁. 重塑土简易制技术及工程应用[J]. 广东公路交通, 2006(1): 57-60. [ZHAO Zhenyong, ZHOU Chuner, CAO Xiren. Remodeling soil simple system technology and engineering application [J]. Guangdong Highway Traffic, 2006(1): 57-60]
[23] 解邦龙, 张吾渝, 张丙印, 等. 不同龄期下粉煤灰水泥土的UU抗剪强度试验研究[J]. 工程地质学报, 2021, 29(4): 1216-1223. [XIE Banglong, ZHANG Wuyu, ZHANG Bingyin, et al. Experimental study on unconsolidated and undrained shear strength of fly ash cement soil at different ages [J]. Journal of Engineering Geology, 2021, 29(4): 1216-1223] DOI: 10.13544/j.cnki.jeg.2019-541
[24] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44: 892-898. DOI: 10.2136/sssaj1980.03615995004400050002x
[25] SHI Xiaoqing, QIN Tianling, YAN Denghua, et al. A meta-analysis on effects of root development on soil hydraulic properties [J]. Geoderma, 2021, 403: 115363. DOI: 10.1016/J.GEODERMA.2021.115363
[26] KHAN K Y, POZDNYAKOV A I, SON B K. Fabric of soil aggregates and characterization of their structural and functional stability [J]. Eurasian Soil Science, 2008, 41(13): 1417-1423. DOI: 10.1134/S1064229308130103
[27] ZENG Quanchao, DARBOUX F, MAN Cheng, et al. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau(China)[J]. Catena, 2018, 167: 276-283. DOI: 10.1016/j.catena.2018.05.009
[28] AMUNDSON R, HEIMSATH A, OWEN J, et al. Hillslope soils and vegetation [J]. Geomorphology, 2015, 234: 122-132. DOI: 10.1016/j.geomorph.2014.12.031
[29] CHENG Y M. Location of critical failure surface and some further studies on slope stability analysis [J]. Computers and Geotechnics, 2003, 30(3): 255-267. DOI: 10.1016/S0266-352X(03)00012-0
[30] LIU Fuming. Stability analysis of geotechnical slope based on strength reduction method [J]. Geotechnical and Geological Engineering, 2020, 38: 3653-3665. DOI: 10.1007/s10706-020-01243-3
[31] 周磊, 李琦, 章璐玮. 基于COMSOL的露天边坡流固耦合稳定性分析及加固对策[J]. 中国矿山工程, 2022, 51(5): 20-23. [ZHOU Lei, LI Qi, ZHANG Luwei. COMSOL stability analysis of open-pit slope fluid-structure interaction and control measures [J]. China Mining Engineering, 2022, 51(5): 20-23] DOI: 10.19607/j.cnki.cn11-5068/tf.2022.05.002
[32] MARISCAL I, PEREGRINA F, TEREFE T, et al. Evolution of some physical properties related to soil quality in the degraded ecosystems of “rana” formations from SW Spain [J]. Science of the Total Environment, 2007, 378(1-2): 130-132. DOI: 10.1016/j.scitotenv.2007.01.025
[33] 王君惠, 喻武. 地形对色季拉山典型植被过渡带土壤有机碳含量的影响[J]. 高原农业, 2021, 5(5): 444-451. [WANG Junhui, YU Wu. The effect of topography on soil organic carbon content in typical vegetation transition zones of Sejila Mountain, southeast Tibet [J]. Journal of Plateau Agriculture, 2021, 5(5): 444-451] DOI: 10.19707/j.cnki.jpa.2021.05.002
[34] 王静娅, 张凤华. 干旱区典型盐生植被群落土壤养分特征[J]. 水土保持学报, 2014, 28(5): 235-241. [WANG Jingya,ZHANG Fenghua. Soil nutrient properties under typical halophytic vegetation community in arid region [J]. Journal of Soil and Water Conservation, 2014, 28(5): 235-241] DOI: 10.13870/j.cnki.stbcxb.2014.05.04
[35] 李航, 严方晨, 焦菊英, 等. 黄土丘陵沟壑区不同植被类型土壤有效水和持水能力[J]. 生态学报, 2018, 38(11): 3889-3898. [LI Hang, YAN Fangchen, JIAO Juying, et al. Soil water availability and holding capacity of different vegetation types in hilly-gullied region of the Loess Plateau [J]. Acta Ecologica Sinica, 2018, 38(11): 3889-3898] DOI: 10.5846/stxb201705170914
[36] 李永平. 黄土高原不同防护类型农田土壤风蚀防控效应研究[D]. 杨凌: 西北农林科技大学, 2011: 100-101. [LI Yongping. Effects of different protective types on the prevention and control of farming soil wind erosion in the Loess Plateau [D]. Yangling: Northwest Agriculture and Forestry University, 2011: 100-101]
[37] ALBIACH R, CANET R, POMARES F, et al. Organic matter components and aggregate stability after the application of different amendments to a horticultural soil [J]. Bioresource Technology, 2001, 76(2): 125-129. DOI: 10.1016/S0960-8524(00)00090-0
[38] 王建林, 王忠红, 张宪洲, 等. 不同植被对高寒草原生态系统土壤有机碳组成和水稳性团聚体含量的影响[J]. 草地学报, 2010, 18(6): 749-757. [WANG Jianlin, WANG Zhonghong, ZHANG Xianzhou, et al. Effect on alpine vegetation of different grassland ecosystems composed of soil organic carbon water stable aggregates content [J]. Acta Agrestia Sinica, 2010, 18(6): 749-757]
[39] 尚应妮, 胡斐南, 赵世伟, 等. 不同胶结物质对黄绵土团聚体形成的影响[J]. 水土保持学报,2017, 31(2): 204-208+239. [SHANG Yingni, HU Feinan, ZHAO Shiwei, et al. Effects of cementing materials on the formation of loessial soil aggregates [J]. Journal of Soil and Water Conservation, 2017, 31(2): 204-208+239] DOI: 10.13870/j.cnki.stbcxb.2017.02.034
[40] NIU Ziru, SU Yongzhong, LI Juan, et al. Effect of attapulgite application on aggregate formation and carbon and nitrogen content in sandy soil [J]. Sustainability, 2023, 15(16): 12511. DOI: 10.3390/SU151612511
[41] SU Wei, GAO Yuemeng, GAO Peng, et al. Effects of different vegetation restoration types on the fractal characteristics of soil particles in Earthy-Rocky Mountain area of northern China [J]. Forests, 2022, 13(8): 1246. DOI: 10.3390/F13081246
[42] DEEPTHY R, BALAKRISHNAN S. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the western Ghats [J]. Journal of Earth System Science, 2005, 114(5): 545-556. DOI: 10.1007/BF02702030
[43] GAO Lili, WANG Bisheng, LI Shengping, et al. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China [J]. Catena, 2019, 173: 38-47. DOI: 10.1016/j.catena.2018.09.043
[44] LI Songyang, GAO Ruoyun, HUANG Maowei, et al. Multifractal features of particle-size distribution and their relationships with soil erosion resistance under different vegetation types in debris flow basin [J]. Frontiers in Earth Science, 2022, 10: 927862. DOI: 10.3389/feart.2022.927862
[45] 吴鹏, 朱军, 崔迎春, 等. 黔中杠寨小流域不同植被类型土壤抗蚀性研究[J]. 中南林业科技大学学报, 2012, 32(8): 64-70. [WU Peng, ZHU Jun, CUI Yingchun, et al. Study on soil anti-erodibility of different vegetation types in Gangzhai small watershed of central Guizhou province [J]. Journal of Central South University of Forestry and Technology, 2012, 32(8): 64-70] DOI: 10.14067/j.cnki.1673-923x.2012.08.018
[46] 潘佑静, 杨智, 韩文君, 等. 喀斯特地区退耕还林下不同植被恢复阶段土壤渗透性研究[J]. 现代农业科技, 2016(8): 191-193+196. [PAN Youjing, YANG Zhi, HAN Wenjun, et al. Different vegetation restoration stages soil permeability study in karst area which returning farmland to forest [J]. Modern Agricultural Science and Technology, 2016(8): 191-193+196]
[47] 雷波, 包维楷, 贾渝, 等. 不同坡向人工油松幼林下地表苔藓植物层片的物种多样性结构特征[J]. 生物多样性, 2004, 12(4): 410-418. [LEI Bo, BAO Weikai, JIA Yu, et al. Ground bryophyte composition and structures under young Pinus tabuliformis forests along the upper Minjiang River [J]. Biodiversity Science, 2004, 12(4): 410-418]
[48] 杨慧玲, 高鹏, 王华伟, 等. 大黑山生态修复区不同植被类型土壤颗粒的分形特征[J]. 中国水土保持科学, 2009, 7(5): 52-57. [YANG Huiling, GAO Peng, WANG Huawei, et al. Characteristics of soil particles fractal dimension under different forest stands of the ecological restoration area in Dahei Mountain area [J]. Science of Soil and Water Conservation, 2009, 7(5): 52-57] DOI: 10.16843/j.sswc.2009.05.010

相似文献/References:

[1]张祖莲,梁谏杰,黄 英,等.干湿循环作用下云南红土特性与库岸边坡稳定性关系研究[J].山地学报,2018,(02):280.[doi:10.16089/j.cnki.1008-2786.000323]
 ZHANG Zulian,LIANG Jianjie,HUANG Ying,et al.On the Relationship between Characteristics of Yunnan Laterite and Stability of the Bank Slope under Wetting-Drying Cycles[J].Mountain Research,2018,(2):280.[doi:10.16089/j.cnki.1008-2786.000323]
[2]张祖莲,梁谏杰,黄 英,等.库岸边坡倾角及水位变化对红土型库岸稳定性影响研究[J].山地学报,2019,(01):62.[doi:10.16089/j.cnki.1008-2786.000399]
 ZHANG Zulian,LIANG Jianjie,HUANG Ying,et al.Investigation of the Influence of Slope Inclination and Water Level Fluctuation on the Stability of Laterite Reservoir Bank[J].Mountain Research,2019,(2):62.[doi:10.16089/j.cnki.1008-2786.000399]
[3]杨志全,丁 攀,雨德聪,等.基于孔隙率的延安黄土抗剪强度模型[J].山地学报,2019,(03):392.[doi:10.16089/j.cnki.1008-2786.000432]
 YANG Zhiquan,DING Pan,YU Decong,et al.Shear Strength of Yan'an Loess Interpreted by Porosity[J].Mountain Research,2019,(2):392.[doi:10.16089/j.cnki.1008-2786.000432]
[4]刘昌义a,胡夏嵩a*,李希来b,等.黄河源区高寒草地根—土复合体抗剪强度与土壤营养元素分布关系[J].山地学报,2020,(3):349.[doi:10.16089/j.cnki.1008-2786.000515]
 LIU Changyia,HU Xiasonga*,LI Xilaib,et al.Relationship Between Shear Strength of Root-Soil Composite Systems of Alpine Grassland and Distribution of Soil Nutrient Elements in the Source Region of the Yellow River, China[J].Mountain Research,2020,(2):349.[doi:10.16089/j.cnki.1008-2786.000515]
[5]何 攀,许 强*,刘佳良,等.基于核磁共振技术的结合水含量对重塑黄土抗剪强度影响试验研究[J].山地学报,2020,(4):571.[doi:10.16089/j.cnki.1008-2786.000535]
 HE Pan,XU Qiang*,LIU Jialiang,et al.Experimental Study on the Effect of Combined Water Content on Shear Strength of Remolded Loess based on NMR[J].Mountain Research,2020,(2):571.[doi:10.16089/j.cnki.1008-2786.000535]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 03-31; 改回日期(Accepted date): 2024- 03-14
基金项目(Foundation item): 国家自然科学基金(41672298); 福州大学省级大学生创新创业训练计划(S202310386110)。[National Natural Science Foundation of China(41672298); Provincial Student Innovation and Entrepreneurship Training Program Project of Fuzhou University(S202310386110)]
作者简介(Biography): 陈伯洲(2003-),男,甘肃兰州人,本科生,主要研究方向:地质灾害与修复。[CHEN Bozhou(2003-), male, born in Lanzhou, Gansu province, B.S. candidate, research on geological hazards and remediation] E-mail: chenbzh2023@126.com
*通讯作者(Corresponding author): 胡建华(1975-),男,博士,教授,主要研究方向:工程稳定性。 [HU Jianhua(1975-), male, Ph.D., professor, specialized in engineering stability] E-mail: hujh789@126.com
更新日期/Last Update: 2024-03-30