[1]冯娅瑛,牟丽敏,周娜娜,等.喀斯特地区含碎石土壤水分扩散能力[J].山地学报,2024,(2):185-195.[doi:10.16089/j.cnki.1008-2786.000815]
 FENG Yaying,MOU Limin,ZHOU Nana,et al.Moisture Diffusion of Soils with Gravel in the Karst Region[J].Mountain Research,2024,(2):185-195.[doi:10.16089/j.cnki.1008-2786.000815]
点击复制

喀斯特地区含碎石土壤水分扩散能力
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第2期
页码:
185-195
栏目:
山地环境
出版日期:
2024-06-15

文章信息/Info

Title:
Moisture Diffusion of Soils with Gravel in the Karst Region
文章编号:
1008-2786-(2024)2-185-11
作者:
冯娅瑛牟丽敏周娜娜韩 珍*
(贵州大学 林学院,贵阳 550025)
Author(s):
FENG Yaying MOU Limin ZHOU Nana HAN Zhen*
(College of Forestry, Guizhou University, Guiyang 550025, China)
关键词:
碎石含量 水分扩散 湿润锋 喀斯特地区
Keywords:
gravel content moisture diffusion wetting front karst region
分类号:
S157.1
DOI:
10.16089/j.cnki.1008-2786.000815
文献标志码:
A
摘要:
中国喀斯特地区基岩裸露、土层浅薄,碎石(粒径>2 mm)在土壤中广泛分布,土壤水分迁移具有一定复杂性。已有研究多集中于水动力条件下土壤的垂直入渗分析,针对喀斯特含碎石土壤的水分水平扩散能力方面的研究鲜见。本研究以贵阳花溪区含碎石土壤为研究对象,通过水平土柱扩散法对比分析不同碎石含量(0、10%、20%、30%、40%)土壤湿润锋的前进状况以及土壤水分扩散率变化特征,探讨喀斯特地区不同碎石含量的土壤水分扩散能力。结果表明:(1)碎石含量相同时,湿润锋前进距离和前进速率与时间之间均呈幂函数关系; 随着水分水平扩散的进行,土柱的体积含水率逐渐减小,玻尔兹曼(Boltzmann)变换参数λ则随着体积含水率的减小而呈指数增大; 随着体积含水率减小,土壤水分扩散率呈递减趋势。(2)碎石含量不同时,湿润锋前进距离和平均速率随着碎石含量的增加总体呈现出增大趋势,但碎石含量为10%时湿润锋前进距离与平均速率均有所减小; 同一位置的体积含水率随碎石含量的增加而增加; 体积含水率相同条件下,土壤水分扩散率随碎石含量增加呈递增趋势。本研究结果可为喀斯特地区土壤水文循环和过程研究提供科学参考。
Abstract:
Karst topography is primarily developed in southwestern China, heavily featured by shallow soil layers and exposed bedrock. Gravel(particle size >2 mm)are the regular components of the soil in karst areas, leading to complex soil moisture migration in the soil.
Most previous studies focused efforts on vertical infiltration analysis of karst soils under hydrodynamic conditions, and little addressed to their horizontal water diffusion capacities.
In this study, it experimentally investigated the soil moisture diffusion capacity of karst soils. Horizontal soil column diffusion experiments were designed to examine the progressive phases of soil wetting front and soil moisture diffusion rate for five sets of remolded karst soils with gravel contents of 0, 10%, 20%, 30%, 40%.
(1)With the same gravel content of all soil samples, the advancement distance and speed of soil wetting front both had a power function relationship with time. As horizontal diffusion of moisture progressed, the volumetric moisture content of the soil column gradually decreased, accompanied by Boltzmann transformation parameter λ increasing exponentially, suggesting soil moisture diffusion rate decreasing simultaneously.
(2)With the gravel content of soil samples increasing, the advancement distance and speed of soil wetting front generally show an increasing trend with the increase of gravel content, but both the advancing distance and average speed of the wetting front decrease when the gravel content is 10%. At the same location, volumetric water content increased with a higher gravel content, accompanied by soil moisture diffusion rate in descending trend of 40%>30%>20%>0>10% of gravel contents.
The study would provide a experimental basis for understanding of soil hydrological cycles and processes in karst region of China.

参考文献/References:

[1] 管凝, 程金花, 侯芳, 等. 不同入渗水量下的西南喀斯特地区人工林土壤优先流特征[J]. 土壤通报, 2023, 54(3): 587-595. [GUAN Ning, CHENG Jinhua, HOU Fang, et al. Characteristics of preferential flow of artificial forest in karst areas of southwest China under different infiltration amounts [J]. Chinese Journal of Soil Science, 2023, 54(3): 587-595] DOI: 10.19336/j.cnki.trtb.2022042403
[2] LAN Xue, DING Guijie, DAI Quanhou, et al. Assessing the degree of soil erosion in karst mountainous areas by extenics [J]. Catena, 2022, 209: 105800. DOI: 10.1016/J.CATENA.2021.105800
[3] 冯娜, 刘冬冬, 丁继辉, 等. 反演含碎石碳酸盐岩红土水力特性[J]. 水土保持学报, 2022, 36(1): 101-109. [FENG Na, LIU Dongdong, DING Jihui, et al. Inversion of hydraulic properties of carbonate-derived laterite containing gravel [J]. Journal of Soil and Water Conservation, 2022, 36(1): 101-109] DOI: 10.13870/j.cnki.stbcxb.2022.01.015
[4] 孙福海, 肖波, 李胜龙, 等. 黄土高原藓类生物结皮对表层土壤水分运动参数的影响[J]. 农业工程学报, 2021, 37(14): 79-88. [SUN Fuhai, XIAO Bo, LI Shenglong, et al. Effects of moss-dominated biocrusts on surface soil-water movement parameters in the Chinese Loess Plateau [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 79-88] DOI: 10.11975/j.issn.1002-6819.2021.14.009
[5] 冉卓灵. 岩石碎屑对紫色土水力学特性的影响[D]. 重庆: 西南大学, 2018: 25-43. [RAN Zhuoling. Effect of rock fragments on hydraulic characteristics of purple soil [D]. Chongqing: Southwest University, 2018: 25-43]
[6] 吴远菲. 黄丘区典型植被坡面土壤水分变化过程研究[D]. 郑州: 华北水利水电大学, 2022: 9-14. [WU Yuanfei. Study on soil moisture change process of typical vegetation slope in the loess hilly-gully region [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022: 9-14] DOI: 10.27144/d.cnki.ghbsc.2022.000532
[7] LAI Xiaoming, LIU Ya, LI Liuyang, et al. Spatial variation of global surface soil rock fragment content and its roles on hydrological and ecological patterns [J]. Catena, 2022, 208: 105752. DOI: 10.1016/J.CATENA.2021.105752
[8] GONG Tiexiong, ZHU Yuanjun, SHAO Ming'an. Effect of embedded-rock fragments on slope soil erosion during rainfall events under simulated laboratory conditions [J]. Journal of Hydrology, 2018, 563: 811-817. DOI: 10.1016/j.jhydrol.2018.06.054
[9] KATO H, ONDA Y, TANAKA Y, et al. Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia [J]. Catena, 2009, 76(3): 173-181. DOI: 10.1016/j.catena.2008.11.003
[10] 司曼菲, 甘永德, 刘欢, 等. 土石混合介质碎石性质对土壤入渗和产流过程影响[J]. 南水北调与水利科技, 2018, 16(2): 59-63+107. [SI Manfei, GAN Yongde, LIU Huan, et al. Effects of gravel properties on soil infiltration and runoff in soil-rock medium [J]. South-to-North Water Transfers and Water Science and Technology, 2018, 16(2): 59-63+107] DOI: 10.13476/j.cnki.nsbdqk.2018.0039
[11] 吴海姣. 掺入不同组分碎石的土石混合物入渗模拟研究[D]. 太谷: 山西农业大学, 2014: 6-37. [WU Haijiao. Simulation of infiltration of soil mixed with different components of gravels [D]. Taigu: Shanxi Agricultural University, 2014: 6-37] DOI: 10.3969/j.issn.1672-3007.2014.03.003
[12] 胡廷飞, 王辉, 胡传旺, 等. 砾石覆盖厚度对斥水土壤入渗特性的影响及模型优选[J].水土保持学报, 2019, 33(2): 17-22+29. [HU Tingfei, WANG Hui, HU Chuanwang, et al. Effect of thickness of gravel cover on infiltration characteristics of water repellent soils and its model optimization [J]. Journal of Soil and Water Conservation, 2019, 33(2): 17-22+29] DOI: 10.13870/j.cnki.stbcxb.2019.02.003
[13] WANG Yongwu, ZHU Qing, LAI Xiaoming, et al. Response of soil hydrological processes to soil rock fragments: A global Meta-analysis [J]. Science China Earth Sciences, 2023, 66(9): 2066-2080. DOI: 10.1007/S11430-023-1132-4
[14] WANG Di, NIU Jianzhi, YANG Tao, et al. Soil water infiltration characteristics of reforested areas in the paleo-periglacial eastern Liaoning mountainous regions, China [J]. Catena, 2024, 234: 107613. DOI: 10.1016/J.CATENA.2023.107613
[15] 张志刚, 李宏, 李疆, 等. 地表滴灌条件下滴头流量对土壤水分入渗—再分布过程的影响[J]. 干旱地区农业研究, 2016, 34(2): 224-231. [ZHANG Zhigang, LI Hong, LI Jiang, et al. Effects of different dripper discharges on soil water infiltration /redistribution under drip irrigation [J]. Agricultural Research in the Arid Areas, 2016, 34(2): 224-231] DOI: 10.7606/j.issn.1000-7601.2016.02.36
[16] 帅嘉伟. 非饱和土壤水分扩散率和渗透系数的计算方法研究[D]. 赣州: 江西理工大学, 2023: 8-13. [SHUAI Jiawei. Research on the test method of water diffusivity and infiltration coefficient of unsaturated soil [D]. Ganzhou: Jiangxi University of Science and Technology, 2023: 8-13] DOI: 10.27176/d.cnki.gnfyc.2022.000170
[17] 吕刚, 王婷, 王韫策, 等. 辽西低山丘陵区坡地砾石含量及粒径对土壤入渗性能的影响[J]. 水土保持学报, 2017, 31(4): 86-92. [LYU Gang, WANG Ting, WANG Yunce, et al. Effect of gravel content and particle size on soil infiltration in low mountainous upland region of western Liaoning province [J]. Research of Soil and Water Conservation, 2017, 31(4): 86-92] DOI: 10.13870/j.cnki.stbcxb.2017.04.015
[18] 韩珍, 王小燕, 李馨欣. 土石混合紫色土坡面水文过程的实验研究[J]. 山地学报, 2017, 35(4): 451-458. [HAN Zhen, WANG Xiaoyan, LI Xinxin. Effects of rock fragment cover on hydrological processes in purple soils [J]. Mountain Research, 2017, 35(4): 451-458] DOI: 10.16089/j.cnki.1008-2786.000242
[19] 王耀鑫, 高家勇, 张玉珊, 等. 喀斯特流域水源涵养功能时空分异及其对景观格局的响应[J]. 水土保持学报, 2023, 37(2): 169-178. [WANG Yaoxin, GAO Jiayong, ZHANG Yushan, et al. Spatial and temporal differentiation of water conservation function in karst basin and its response to landscape pattern [J]. Journal of Soil and Water Conservation, 2023, 37(2): 169-178] DOI: 10.13870/j.cnki.stbcxb.2023.02.020
[20] 田力, 安明态, 杨焱冰, 等. 贵州省分布的国家重点保护野生植物组成特征与地理分布格局[J]. 植物资源与环境学报, 2023, 32(3): 83-91. [TIAN Li, AN Mingtai, YANG Yanbing, et al. Composition characteristics and geographical distribution pattern of national key protected wild plants distributed in Guizhou province [J]. Journal of Plant Resources and Environment, 2023, 32(3): 83-91] DOI: 10.3969/j.issn.1674-7895.2023.03.09
[21] 颜蒙蒙, 周洲, 王济, 等. 喀斯特地区土壤水分随降雨的动态变化研究——以贵阳市花溪区为例[J]. 中国岩溶, 2016, 35(4): 446-452. [YAN Mengmeng, ZHOU Zhou, WANG Ji, et al. Study on the dynamic change of soil moisture in karst area: A case of Huaxi district in Guiyang city [J]. Carsologica Sinica, 2016, 35(4): 446-452] DOI: 10.11932/karst20160413
[22] ZHOU Qiuwen, KEITH D M, ZHOU Xu, et al. Comparing the water-holding characteristics of broadleaved, coniferous, and mixed forest litter layers in a karst region [J]. Mountain Research and Development, 2018, 38(3): 220-229. DOI: 10.1659/MRD-JOURNAL-D-17-00002.1
[23] 苏维词. 中国西南岩溶山区石漠化的现状成因及治理的优化模式[J]. 水土保持学报, 2002, 16(2): 29-32+79. [SU Weici. Controlling model for rocky desertification of karst mountainous region and its preventing strategy in southwest, China [J]. Journal of Soil and Water Conservation, 2002, 16(2): 29-32+79] DOI: 10.13870/j.cnki.stbcxb.2002.02.008
[24] 杨懿, 高华端, 王群, 等. 多因素影响下的喀斯特山区坡耕地分布特征——以贵阳市花溪区为例[J]. 水土保持研究, 2022, 29(1): 361-367. [YANG Yi, GAO Huaduan, WANG Qun, et al. Study on the distribution characteristics of sloping farmland in karst mountain area under the influence of multiple factors: A case study of Huaxi district of Guiyang [J]. Research of Soil and Water Conservation, 2022, 29(1): 361-367]DOI: 10.13869/j.cnki.rswc.2022.01.040
[25] LY/T 1225-1999. 森林土壤颗粒组成(机械组成)的测定 [S]. 北京: 中国标准出版社, 1999. [LY/T 1225-1999. Determination of forest soil particle-size composition(mechanical composition)[S]. Beijing: Standards Press of China, 1999]
[26] 盛茂银, 熊康宁, 崔高仰, 等. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J].生态学报, 2015, 35(2): 434-448. [SHENG Maoyin, XIONG Kangning, CUI Gaoyang, et al. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China [J]. Acta Ecologica Sinica, 2015, 35(2): 434-448] DOI: 10.5846/stxb201303220488
[27] 王鹤. 黑土区施用生物炭的土壤水动力学后效应及其数值模拟[D]. 哈尔滨: 东北农业大学, 2020: 61-66. [WANG He. Post-hydrodynamic effects and numerical simulation of biochar applied to black soil [D]. Harbin: Northeast Agricultural University, 2020: 61-66] DOI: 10.27010/d.cnki.gdbnu.2020.000506
[28] 吴凤平, 王辉, 卢霞, 等. 砂石含量及粒径对红壤水分扩散率的影响[J]. 水土保持学报, 2009, 23(2): 228-231. [WU Fengping, WANG Hui, LU Xia, et al. Effect of rock fragment content and size on red soil water diffusivity [J]. Research of Soil and Water Conservation, 2009, 23(2): 228-231] DOI: 10.13870/j.cnki.stbcxb.2009.02.030
[29] 周蓓蓓, 邵明安. 不同碎石含量及直径对土壤水分入渗过程的影响[J]. 土壤学报, 2007, 44(5): 801-807. [ZHOU Beibei, SHAO Ming'an. Effect of content and size of rock detritus on infiltration [J]. Acta Pedologica Sinica, 2007, 44(5): 801-807] DOI: 10.3321/j.issn:0564-3929.2007.05.005
[30] 李江文, 冉卓灵, 韩珍, 等. 含岩屑紫色土水分扩散规律[J]. 水土保持学报, 2020, 34(1): 178-185. [LI Jiangwen, RAN Zhuoling, HAN Zhen, et al. Water diffusion law of purple soil containing rock fragments [J]. Research of Soil and Water Conservation, 2020, 34(1): 178-185] DOI: 10.13870/j.cnki.stbcxb.2020.01.026
[31]冯艳, 谢栋博, 陈军洲, 等. 城市绿地不同植被群落对表层土壤入渗的影响[J]. 西北林学院学报, 2021, 36(3): 267-272. [FENG Yan, XIE Dongbo, CHEN Junzhou, et al. Effects of different vegetation communities on infiltration of surface soil in urban green space [J]. Journal of Northwest Forestry University, 2021, 36(3): 267-272] DOI: 10.3969/j.issn.1001-7461.2021.03.39
[32] 马效松, 付强, 徐淑琴, 等. 不同冻融时期土壤水分运动参数特征分析及数值模拟[J].应用基础与工程科学学报, 2020, 28(4): 774-787. [MA Xiaosong, FU Qiang, XU Shuqin, et al. Analysis and simulation of soil moisture movement parameters during different freezing-thawing periods [J]. Journal of Basic Science and Engineering, 2020, 28(4): 774-787] DOI: 10.16058/j.issn.1005-0930.2020.04.003
[33] 陈功, 刘虎, 魏占民. 草原露天矿区劣质土壤水平扩散特征与模拟[J]. 水土保持学报, 2023, 37(2): 76-82+89. [CHEN Gong, LIU Hu, WEI Zhanmin. Horizontal diffusion characteristics and simulation of poor soil in grassland open-pit area [J]. Journal of Soil and Water Conservation, 2023, 37(2): 76-82+89] DOI: 10.13870/j.cnki.stbcxb.2023.02.010
[34] 魏飒, 任树梅. 承德围场地区土壤水分扩散率的研究[J]. 中国农村水利水电, 2007, 48(1): 55-56+61.[WEI Sa, REN Shumei. Soil moisture diffusivity in Chengde Weichang region [J]. China Rural Water and Hydropower, 2007, 48(1): 55-56+61] DOI: 10.3969/j.issn.1007-2284.2007.01.016

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-10-24; 改回日期(Accepted date):2024- 03-22
基金项目(Foundation item): 贵州省基础研究项目(自然科学)(黔科合基础-ZK[2023]一般 065)。 [Guizhou Provincial Basic Research Program(Natural Science)(QKHJC-ZK[2023]YB65)]
作者简介(Biography): 冯娅瑛(2001-),女,贵州遵义人,硕士研究生,主要研究方向:土壤侵蚀及流域治理。[FENG Yaying(2001-), female, born in Zunyi, Guizhou province, M.Sc. candidate, research on soil erosion and watershed management] E-mail: fengyayi0@163.com
*通讯作者(Corresponding author): 韩珍(1994-),女,博士,讲师,主要研究方向:土壤侵蚀及流域治理。[HAN Zhen(1994-), female, Ph.D., lecturer, research on soil erosion and watershed management] E-mail: zhan@gzu.edu.cn
更新日期/Last Update: 2024-03-30