参考文献/References:
[1] HAEBERLI W, KÄÄB A, MÜHLL D V, et al. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps[J]. Journal of Glaciology, 2001, 47(156): 111-122. DOI: 10.3189/172756501781832575
[2] 石振明, 李建可, 鹿存亮, 等. 堰塞湖坝体稳定性研究现状及展望[J]. 工程地质学报, 2010, 18(5): 657-663.[SHI Zhenming, LI Jianke, LU Cunliang, et al. Research status and prospect of the stability of landslide dam[J]. Journal of Engineering Geology, 2010, 18(5): 657-663] DOI: 10.3969/j.issn.1004-9665.2010.05.008
[3] WANG Xin, LIU Shiyin, DING Yongjian, et al. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data[J]. Natural Hazards and Earth System Sciences, 2012, 12(10): 3109-3122. DOI: 10.5194/nhess-12-3109-2012
[4] WATANABE T, KAMEYAMA S, SATO T. IMJA glacier dead-ice melt rates and changes in a supra-glacial lake, 1989-1994, Khumbu Himal, Nepal: Danger of lake drainage[J]. Mountain Research and Development, 1995, 15(4): 293-300. DOI: 10.2307/3673805
[5] 徐道明, 冯清华. 西藏喜马拉雅山区危险冰湖及其溃决特征[J]. 地理学报, 1989, 44(3): 343-352.[XU Daoming, FENG Qinghua. Dangerous glacial lake and outburst features in Xizang Himalayas[J]. Acta Geographica Sinica, 1989, 44(3): 343-352] DOI: 10.11821/xb198903010
[6] 刘建康, 周路旭. 国内外冰碛湖溃决研究进展[J]. 探矿工程(岩土钻掘工程), 2018, 45(8): 44-50.[LIU Jiankang, ZHOU Luxu. Research progress on moraine dammed lake outburst flood[J]. Exploration Engineering(Rock and Soil Drilling and Tunneling), 2018, 45(8): 44-50] DOI: 10.3969/j.issn.1672-7428.2018.08.010
[7] NEUPANE R, CHEN Huayong, CAO Chunran. Review of moraine dam failure mechanism[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1948-1966. DOI: 10.1080/19475705.2019.1652210
[8] 王欣, 蒋亮虹, 刘时银, 等. 喜马拉雅山北坡冰碛湖坝温度特征及其对堤坝稳定的影响[J]. 冰川冻土, 2014,36(6): 1517-1525.[WANG Xin, JIANG Lianghong, LIU Shiyin, et al. Temperature features of a moraine-dam on north slopes of the Himalayas and their effect on dam stability[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1517-1525] DOI: 10.7522/j.issn.1000-0240.2014.0182
[9] 张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43(6): 1673-1692.[ZHANG Taigang, WANG Weicai, GAO Tanguang, et al. Glacial lake outburst floods on the High Mountain Asia: A review[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1673-1692] DOI: 10.7522/j.issn.1000-0240.2021.0066
[10] LIU Lin, ZHANG Tingjun, WAHR J. InSAR measurements of surface deformation over permafrost on the north slope of Alaska[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03023. DOI: 10.1029/2009JF001547
[11] ANTONOVA S, SUDHAUS H, STROZZI T, et al. Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry[J]. Remote Sensing, 2018, 10(4): 494. DOI: 10.3390/rs10040494
[12] DAOUT S, DOIN M P, PELTZER G, et al. Large scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909. DOI: 10.1002/2016GL070781
[13] 王志红, 任金铜, 范成成, 等. Sentinel-1A在西南煤矿区地表沉陷监测中的适用性分析[J]. 地球物理学进展, 2021, 36(6): 2339-2350.[WANG Zhihong, REN Jintong, FAN Chengcheng, et al. Applicability analysis of Sentinel-1A in surface subsidence monitoring in southwest coal mining area[J]. Progress in Geophysics, 2021, 36(6): 2339-2350] DOI: 10.6038/pg2021EE0577
[14] 熊文秀, 冯光财, 李志伟, 等. 顾及时空特性的SBAS高质量点选取算法[J]. 测绘学报, 2015, 44(11): 1246-1254.[XIONG Wenxiu, FENG Guangcai, LI Zhiwei, et al. High quality targets selection in SBAS-InSAR technique by considering temporal and spatial characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1246-1254] DOI: 10.11947/j.AGCS.2015.20140547
[15] 熊鹏, 左小清, 李勇发, 等. InSAR技术在高速公路灾害辅助识别中的应用[J]. 测绘通报, 2020(8): 87-91.[XIONG Peng, ZUO Xiaoqing, LI Yongfa, et al. Application of InSAR technology in auxiliary identification of expressway disasters[J]. Bulletin of Surveying and Mapping, 2020(8): 87-91] DOI: 10.13474/j.cnki.11-2246.2020.0254
[16] WANG Jia, WANG Xin, ZHANG Yanlin, et al. Simulation of freeze-thaw and melting of buried ice in Longbasaba moraine dam in the central Himalayas between 1959 and 2100 using COMSOL multiphysics[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(3): e2022JF006848. DOI: 10.1029/2022JF006848
[17] 肖序常, 王军. 青藏高原构造演化及隆升的简要评述[J]. 地质论评, 1998, 44(4): 372-381.[XIAO Xuchang, WANG Jun. A brief review of tectonic evolution and uplift of the Qinghai-Tibet Plateau[J]. Geological Review, 1998, 44(4): 372-381] DOI: 10.16509/j.georeview.1998.04.006
[18] 汪汉胜, WU Patrick, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24(6): 1958-1967.[WANG Hansheng, WU P, XU Houze. A review of research in glacial isostatic adjustment[J]. Progress in Geophysics, 2009, 24(6): 1958-1967] DOI: 10.3969/j.issn.1004-2903.2009.06.005
[19] 张特, 魏俊锋, 张勇, 等. 1988-2018年喜马拉雅山中部龙巴萨巴冰川变化数据集[J]. 中国科学数据(中英文网络版), 2021, 6(4): 84-94.[ZHANG Te, WEI Junfeng, ZHANG Yong, et al. A dataset for annual changes of Longbasaba Glacier in the central Himalayas from 1988-2018[J]. Chinese Science Data(Chinese-English Web Edition), 2021, 6(4): 84-94] DOI: 10.11922/11-6035.csd.2021.0051.zh
[20] WEI Junfeng, LIU Shiyin, WANG Xin, et al. Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018[J]. Journal of Glaciology, 2021, 67(263): 473-484. DOI: 10.1017/jog.2020.119
[21] WANG Xin, LIU Shiyin, GUO Wanqin, et al. Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida Lakes, China[J]. Mountain Research and Development, 2008, 28(3): 310-317. DOI: 10.1659/mrd.0894
[22] 刘国祥, 陈强, 罗小军, 等. InSAR原理与应用[M]. 北京: 科学出版社, 2019: 160-171, 218-219.[LIU Guoxiang, CHEN Qiang, LUO Xiaojun, et al. InSAR principles and applications[M]. Beijing: Science Press, 2019: 160-171, 218-219]
[23] 刘世博, 赵林, 汪凌霄, 等. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021,43(4): 964-975.[LIU Shibo, ZHAO Lin, WANG Lingxiao, et al. Application of InSAR technology in monitoring deformation in permafrost areas[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 964-975] DOI: 10.7522/j.issn.1000-0240.2021.0033
[24] WANG Xin, YANG Chengde, ZHANG Yanlin, et al. Monitoring and simulation of hydrothermal conditions indicating the deteriorating stability of a perennially frozen moraine dam in the Himalayas[J]. Journal of Glaciology, 2018, 64(245): 407-416. DOI: 10.1017/jog.2018.38
[25] SHAO Yawu, SUO Yonglu, XIAO Jiang, et al. Creep characteristic test and creep model of frozen soil[J]. Sustainability, 2023, 15(5): 3984. DOI: 10.3390/su15053984
[26] GAO Qiang, WEN Zhi, ZHOU Zhiwei, et al. A creep model of pile-frozen soil interface considering damage effect and ice effect[J]. International Journal of Damage Mechanics, 2022, 31(1): 3-21. DOI: 10.1177/10567895211019067
[27] WANG Pan, LIU Enlong, ZHI Bin, et al. Creep characteristics and unified macro-meso creep model for saturated frozen soil under constant/variable temperature conditions[J]. Acta Geotechnica, 2022, 17(11): 5299-5319. DOI: 10.1007/s11440-022-01586-6
[28] TAI Bowen, WU Qingbai, YUE Zurun, et al. Ground temperature and deformation characteristics of anti-freeze-thaw embankments in permafrost and seasonal frozen ground regions of China[J]. Cold Regions Science and Technology, 2021, 189: 103331. DOI: 10.1016/j.coldregions.2021.103331
[29] ZHANG Peng, CHEN Yan, CHEN Yunping. Permafrost stability and land surface temperature distribution study using multi-source remote sensing data in the Qinghai-Tibet Plateau[C]. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE, 2022: 3915-3918. DOI: 10.1109/IGARSS46834.2022.9884765
[30] ZHANG Feng, SHI Sheng, FENG Decheng, et al. Investigation on creep behavior of warm frozen silty sand under thermo-mechanical coupling loads[J]. Journal of Mountain Science, 2021, 18(7): 1951-1965. DOI: 10.1007/s11629-020-6411-x
[31] NEAUPANE K M, YAMABE T, YOSHINAKA R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 563-580. DOI: 10.1016/S0148-9062(99)00026-1
[32] ZHANG Zhongqiong, LI Miao, WEN Zhi, et al. Degraded frozen soil and reduced frost heave in China due to climate warming[J]. Science of the Total Environment, 2023, 893: 164914. DOI: 10.1016/j.scitotenv.2023.164914
[33] BLIKRA L H, CHRISTIANSEN H H. A field-based model of permafrost-controlled rockslide deformation in northern Norway[J]. Geomorphology, 2014, 208: 34-49. DOI: 10.1016/j.geomorph.2013.11.014
[34] HARRISON S, KARGEL J S, HUGGEL C, et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods[J]. The Cryosphere, 2018, 12(4): 1195-1209. DOI: 10.5194/tc-12-1195-2018
[35] LANGSTON G, BENTLEY L R, HAYASHI M, et al. Internal structure and hydrological functions of an alpine proglacial moraine[J]. Hydrological Processes, 2011, 25(19): 2967-2982. DOI: 10.1002/hyp.8144
[36] CHEN Wanxin, WU Jianying. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103153. DOI: 10.1016/j.tafmec.2021.103153
[37] HAUCK C, VIEIRA G, GRUBER S, et al. Geophysical identification of permafrost in Livingston Island, maritime Antarctica[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S19. DOI: 10.1029/2006JF000544
[38] 吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于主动加热光纤法的冻土相变温度场特征分析[J]. 工程地质学报, 2019, 27(5): 1093-1100.[WU Bing, ZHU Honghu, CAO Dingfeng, et al. Investigation of phase change temperature field in frozen soil based on actively heated fiber optics method[J]. Journal of Engineering Geology, 2019, 27(5): 1093-1100] DOI: 10.13544/j.cnki.jeg.2019135