[1]周 剑ab,汤明高ab*,裴芳歌,等.基于机器学习的库岸滑坡变形短期预测[J].山地学报,2023,(6):891-903.[doi:10.16089/j.cnki.1008-2786.000795]
 ZHOU Jianab,TANG Minggaoab*,PEI Fangge,et al.Short-Term Deformation of Reservoir Slope Based on Machine Learning[J].Mountain Research,2023,(6):891-903.[doi:10.16089/j.cnki.1008-2786.000795]
点击复制

基于机器学习的库岸滑坡变形短期预测
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第6期
页码:
891-903
栏目:
山地灾害
出版日期:
2023-11-25

文章信息/Info

Title:
Short-Term Deformation of Reservoir Slope Based on Machine Learning
文章编号:
1008-2786-(2023)6-891-13
作者:
周 剑1a1b汤明高1a1b*裴芳歌2 李超瑞1a1b
(1. 成都理工大学 a.地质灾害防治与地质环境保护国家重点实验室; b.环境与土木工程学院 成都 610059; 2. 西南交通大学希望学院 成都 610400)
Author(s):
ZHOU Jian1a1b TANG Minggao1a1b* PEI Fangge2 LI Chaorui1a1b
(1. a. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; b. College of Environment and Civil Engineering,Chengdu University of Technology, Chengdu,610059; 2. Southwest Jiaotong University Hope College, Chengdu 610400)
关键词:
溪洛渡库区 滑坡位移 长短时记忆网络 短期预测
Keywords:
the Xiluodu reservoir area slope displacement long and short-term memory network short-term forecast
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000795
文献标志码:
A
摘要:
库岸边坡是一个复杂的地质综合体,库岸滑坡是威胁库区安全的地质隐患。多数传统滑坡预测模型为静态模型,未将滑坡变形特征与位移预测二者结合考虑,不能实际反映滑坡演化过程中的动态特性。本文基于溪洛渡库区58处涉水滑坡变形监测结果,归纳了库岸滑坡变形规律,采用机器学习方法实现了不同特征滑坡变形趋势的短期预测。研究结果显示:(1)研究区年平均地表形变速率处于-116.841~265mm·yr-1,负值代表目标地物远离卫星方向位移,正值代表目标地物靠近卫星方向移动,其中存在缓慢变形滑坡13处,根据其累计位移曲线特征划分为:阶跃型、振荡型和持续增长型三类。(2)阶跃型滑坡滑面多为弧线型,其变形主要受库水位周期性变动影响; 振荡型滑坡滑面多为折线型,其变形多受库水位和降雨共同作用; 持续增长型滑坡滑面多为直线型,其变形主要受自身地质条件控制。(3)针对不同变形特征滑坡,采用长短时记忆(LSTM)神经网络模型考虑多因素耦合和滑坡演化状态建立了滑坡变形动态预测模型,通过评价结果验证,该模型具有较高预测精度及良好的适用性。研究结果可以为溪洛渡库区滑坡系统研究与防治提供依据,为库区不同变形特征滑坡短期预测提供新思路。
Abstract:
Reservoir bank slope is a geological complex. In case a reservoir bank slope fails, it would bring communities in close proximity to a reservoir with tremendous losses of the lives and property. Most of traditional landslide prediction models were static models, which do not combine landslide deformation characteristics and displacement prediction, and could not actually reflect the dynamic characteristics of landslide evolution process. For effective geohazard prevention and mitigation in reservoir area, accurate estimation of landslide displacement and understanding deformation characteristics are crucial.
Based on the deformation monitoring using time series InSAR technology at 58 reservoir bank-related landslides in the Xiluodu reservoir area, reservoir landslide deformation law was summarized, and estimation of the short-term deformation of the slopes with different behavior patterns was made by using a machine learning method.
It found that(1)the annual average surface deformation rate in the Xiluodu reservoir was in the range of -116.841 mm/yr to 265 mm/yr, with the negative value describing displacement of a target object away from satellite's direction, whereas the positive value denoting the movement towards satellite's direction. There were 13 landslides with slow deformation, which were classified into three types based on their cumulative displacement curve: step-type, oscillation-type, and continuous-growth-type.(2)The sliding surface of step landslide is mostly arc-shaped, and it was mainly affected by the periodic change of reservoir water level. The deformation of oscillating-type landslide, which was characterized by a polyline sliding surface, was mostly affected by reservoir water level and rainfall. The continuous-growth-type landslide typically had a linear sliding surface, with deformation predominantly controlled by its own geological conditions.(3)For landslides with different deformation characteristics, a dynamic model of landslide deformation was established using the Long Short-Term Memory(LSTM)neural network model inclusive of multi-factor coupling and the evolution state of landslides. This model proved high prediction accuracy and fine applicability to landslides with varied deformation characteristics by result verification.
The research results have certain reference basis for systematic research and prevention of landslides in the Xiluodu reservoir area, and can provide new ideas for short-term prediction of landslides with different deformation characteristics for similar reservoir areas.

参考文献/References:

[1] BARLA G, PARONUZZI P. The 1963 Vajont landslide: 50th anniversary [J]. Rock Mechanics and Rock Engineering, 2019, 46(6): 1267-1270. DOI: 10.1007/s00603-013-0483-7
[2] DYKES A P, BROMHEAD E N. Hazards from lakes and reservoirs: New interpretation of the Vaiont disaster [J]. Journal of Mountain Science, 2022, 19(6): 1717-1737. DOI: 10.1007/s11629-021-7098-3
[3] 刘艺梁, 陈健翔, 高晨曦, 等. 基于滑面分区段力学模型的高速滑坡运动过程能量转化研究[J]. 地质科技通报, 2022, 41(2): 139-146. [LIU Yiliang, CHEN Jianxiang, GAO Chenxi, et al. Energy conversion of the high-speed landslide movement process based on a sliding surface partition mechanical model [J]. Bulletin of Geological Science and Technology, 2022, 41(2): 139-146] DOIi: 10.19509/j.cnki.dzkq.2022.0061
[4] YIN Yueping, HUANG Bolin, CHEN Xiaoting, et al. Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China [J]. Landslides, 2015, 12(2): 355-364. DOI: 10.1007/s10346-015-0564-7
[5] 杨何, 汤明高, 许强, 等. 长江三峡库区滑坡变形统计特征研究[J]. 灾害学, 2021, 36(2): 37-42. [YANG He, TANG Minggao, XU Qiang, et al. Research of statistical characteristics of deformation of landslides in the Three Gorges Reservoir area of the Yangtze River [J]. Journal of Catastrophology, 2021, 36(2): 37-42]. DOI: 10.3969/j.issn.1000-811X.2021.02.007
[6] 李松林. 三峡库区涉水滑坡对库水位变动的变形响应及其自适应性研究[D]. 成都: 成都理工大学, 2020:116-120. [LI Songlin. Study on the reactivation characteristic and deformation self-adaptive of landslides in the Three Gorges Reservoir Area [D]. Chengdu: Chengdu University of Technology, 2020: 116-120] DOI: 10.26986/d.cnki.gcdlc.2020.000032
[7] 汤明高, 李松林, 许强, 等. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764. [TANG Minggao, LI Songlin, XU Qiang, et al. Research on deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764] DOI: 10.16285/j.rsm.2019.0214
[8] 李松林, 汤明高, 许强, 等. 库水位上升条件下浮托减重型滑坡离心模型试验[J]. 东北大学学报(自然科学版), 2020, 41(5): 616-622+634. [LI Songlin, TANG Minggao, XU Qiang, et al. Centrifugal model tests on buoyancy-induced weight loss landslides influenced by rising reservoir water level [J]. Journal of Northeastern University(Natural Science), 2020, 41(5): 616-622+634] DOI: 10.12068 /j.issn.1005-3026.2020.05.002
[9] ZHU Xing, MA Shuqi, XU Qiang, et al. A WD-GA-LSSVM model for rainfall-triggered landslide displacement prediction [J]. Journal of Mountain Science, 2018, 15(1): 156-166. DOI: 10.1007/s11629-016-4245-3
[10] TANG Yang, WU Wei, YIN Kunlong, et al. A hydro-mechanical coupled analysis of rainfall induced landslide using a hypoplastic constitutive model [J]. Computers and Geotechnics, 2019, 112: 284-292. DOI: 10.1016/j.compgeo.2019.04.024
[11] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391. [ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391] DOI: 10.13722 /j.cnki.jrme.2015.02.017
[12] 邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669. [DENG Dongmei, LIANG Ye, WANG Liangqing, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression— a case of landslides in Three Gorges Reservoir area [J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669] DOI: 10.16285/j.rsm.2017.12.034
[13] 邢保印, 张炜怡, 章广成, 等. 基于变形速率分解的阶跃型滑坡预测——以呷爬滑坡为例[J]. 岩石力学与工程学报, 2023, 42: 1-13. [XING Baoyin, ZHANG Weiyi, ZHANG Guangcheng, et al. Prediction of step landslide based on deformation rate decomposition—a case study of Gapa landslide [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42: 1-13] DOI: 10.13722/j.cnki.jrme.2022.0424
[14] XU Shiluo, NIU Ruiqing. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China [J]. Computers and Geosciences, 2018, 111: 87-96. DOI: 10.1016/j.cageo.2017.10.013
[15] HAN Jianfeng, YANG Honglei, LIU Youfeng, et al. A deep learning application for deformation prediction from ground-based InSAR [J]. Remote Sening, 2022, 14: 5067. DOI: 10.3390/rs14205067
[16] LIN Zian, SUN Xiyan, JI Yuanfa. Landslide displacement prediction model using time series analysis method and modified LSTM model [J]. Electronics, 2022, 11(10): 1519. DOI: 10.3390/electronics11101519
[17] DUAN Gonghao, SU Yangwei, FU Jie. Landslide displacement prediction based on multivariate LSTM model [J]. International Journal of Environmental Research and Public Health, 2023, 20: 1167. DOI: 10.3390/ijerph20021167
[18] 张振坤, 张冬梅, 李江, 等. 基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J]. 岩土力学, 2022, 43(S2): 477-486+507. [ZHANG Zhenkun, ZHANG Dongmei, LI Jiang, et al. LSTM-MH-SA landslide displacement prediction model based on multi-head-self-attention mechanism [J]. Rock and Soil Mechanics, 2022, 43(S2): 477-486+507] DOI: 10.16285/j.rsm.2021.2091
[19] YANG Shasha, JIN Anjie, NIE Wen, et al. Research on SSA-LSTM-based slope monitoring and early warning model [J]. Sustainability, 2022, 14(16): 10246. DOI: 10.3390/su141610246
[20] LI Lingjing, WEN Baoping, YAO Xin, et al. InSAR-based method for monitoring the long-time evolutions and spatial-temporal distributions of unstable slopes with the impact of water-level fluctuation: A case study in the Xiluodu reservoir [J]. Remote Sensing of Environment, 2023, 295: 113686. DOI: 10.1016/j.rse.2023.113686
[21] 刘吉, 李天斌. 金沙江溪洛渡—白鹤滩段岸坡变形破坏规律[J]. 长江科学院院报, 2019, 36(6): 31-36+41. [LIU Ji, LI Tianbin. Laws of deformation and failure of bank slope from Xiluodu to Baihetan segment of Jinsha River [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(6): 31-36+41] DOI: 10.11988/ ckyyb.20171156
[22] DONG Jiahui, NIU Ruiqing, LI Bingquan, et al. Potential landslides identification based on temporal and spatial filtering of SBAS-InSAR results [J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 52-75. DOI: 10.1080/ 19475705.2022.2154574
[23] 顿佳伟, 冯文凯, 易小宇, 等. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究—以葫芦口镇至象鼻岭段为例[J]. 工程地质学报, 2023, 31(2): 479-492.[DUN Jiawei, FENG Wenkai, YI Xiaoyu, et al. Early InSAR identification of active landslide before impoundment in Baihetan reservoir area- a case study of Hulukou town Xiangbiling section [J]. Journal of Engineering Geology, 2023, 31(2): 479-492] DOI: 10.13544/j.cnki.jeg.2022-0016
[24] 郭子正, 殷坤龙, 黄发明, 等. 基于地表监测数据和非线性时间序列组合模型的滑坡位移预测[J]. 岩石力学与工程学报, 2018, 37(s1): 3392 -3399. [GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combination model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(s1): 3392-3399] DOI: 10.13722/j.cnki.jrme.2016.1534
[25] 宋丽伟. 基于经验模态分解和LSTM模型的滑坡位移预测[J]. 人民长江, 2020, 51(5): 144-148. [SONG Liwei. Landslide displacement prediction based on empirical mode decomposition and LSTM neural network model [J]. Yangtze River, 2020, 51(5): 144-148] DOI: 10.16232/j.cnki.1001-4179.2020.05.024
[26] 杨背背, 殷坤龙, 杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37(10): 2334-2343. [YANG Beibei, YIN Kunlong, DU Juan. A model for predicting landslide displacement based on time series and long and short term memory neural network [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2334-2343] DOI: 10.13722/j.cnki.jrme.2018.0468
[27] 张凯, 张科, 保瑞, 等. 基于优化经验模态分解和聚类分析的滑坡位移智能预测研究[J]. 岩土力学, 2021, 42(1): 211-223. [ZHANG Kai, ZHANG Ke, BAO Rui, et al. Intelligent prediction of landslide displacements based on optimized empirical mode decomposition and K-Mean clustering [J]. Rock and Soil Mechanics, 2021, 42(1): 211-223] DOI: 10.16285/j.rsm.2020.1300
[28] 李丽敏, 郭伏, 温宗周, 等. 基于长短时记忆与多影响因子的滑坡位移动态预测[J]. 科学技术与工程, 2020, 20(33): 13559-13567. [LI Limin, GUO Fu, WEN Zongzhou, et al. Dynamic prediction of landslide displacement based on long short time memory and multiple influencing factors [J]. Science Technology and Engineering, 2020, 20(33): 13559-13567]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 02-23; 改回日期(Accepted):2023-12- 07
基金项目(Foundation item): 国家自然科学基金(41977255)。[National Natural Science Foundation of China(41977255)]
作者简介(Biography): 周剑(1993-),男,博士研究生,主要研究方向:地质灾害机理、评价预测及防治。 [ZHOU Jian(1993), male,Ph.D. candidate, research on geological disaster mechanism,evaluation and prediction and prevention] E-mail:798294061@qq.com
*通讯作者(Corresponding author): 汤明高(1978-),男,博士,教授,主要研究方向:地质灾害机理、评价预测及防治。[TANG Minggao(1978-), male, Ph.D., professor, research on geological disaster mechanism,evaluation and prediction and prevention] E-mail:tomyr2008@163.com
更新日期/Last Update: 2023-11-30