[1]晏红波,王佳华,卢献健,等.基于半经验模型的遥感影像地形校正效应及适用性分析[J].山地学报,2023,(5):759-770.[doi:10.16089/j.cnki.1008-2786.000785]
 YAN Hongbo,WANG Jiahua,LU Xianjian,et al.Effect and Applicability of Terrain Correction of Remote Sensing Images Based on Semi-Empirical Models[J].Mountain Research,2023,(5):759-770.[doi:10.16089/j.cnki.1008-2786.000785]
点击复制

基于半经验模型的遥感影像地形校正效应及适用性分析
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第5期
页码:
759-770
栏目:
山区技术
出版日期:
2023-09-25

文章信息/Info

Title:
Effect and Applicability of Terrain Correction of Remote Sensing Images Based on Semi-Empirical Models
文章编号:
1008-2786-(2023)5-759-12
作者:
晏红波王佳华卢献健李 浩
(桂林理工大学 测绘地理信息学院,广西 桂林 541006)
Author(s):
YAN Hongbo WANG Jiahua LU Xianjian LI Hao
(College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, Guangxi, China)
关键词:
地形校正 遥感影像 半经验模型 适用性
Keywords:
topographic correction remote sensing image semi-empirical model applicability
分类号:
P23
DOI:
10.16089/j.cnki.1008-2786.000785
文献标志码:
A
摘要:
地形校正是遥感影像数据处理的关键步骤,但校正模型在不同地形条件和不同尺度下的校正效果仍缺乏充分、全面验证和比较,限制了地形校正模型的广泛应用。为了探究不同地形条件下地形校正模型的效果和适用性,本研究选取Landsat 8 OLI 30 m影像数据作为数据源,并结合SRTM_V3 30 m DEM数据,采用C、SCS+C(Sun-Canopy-Sensor+C)、Minnaert三种半经验地形校正模型在高原、山地、盆地、峰丛四种典型地形进行校正实验; 运用目视分析、相关性分析和统计分析法,对上述方法在不同地形样区的校正效果进行了深入分析和对比。结果表明:(1)在高原样区,C模型的校正效果最好,能够显著减小影像反射率与太阳入射角余弦值之间的线性回归斜率和决定系数(R2),并且各波段的四分位距减少量也最多,尤其在近红外波段,减少了26%。(2)在山地样区中,SCS+C模型考虑了植被生长的向地性,校正后R2最小,为0.003,且各波段IQRR(Interquartile Range Reduction)也最大,说明其在山地样区适用性更高。(3)在盆地样区中,Minnaert模型考虑了地表的双向反射特性,校正后R2最小,为0.008,说明其对影像反射率与太阳入射角余弦值之间相关性的削弱程度最大,IQRR也比其他两种方法更大,因此其对盆地样区具有较好的适用性。(4)在峰丛样区中,C和SCS+C模型校正后出现了过校正现象; 相比之下,Minnaert模型的校正效果较好,但仍需进一步改进以提高对阴影区域的校正效果。本研究可为遥感影像数据处理提供技术支撑。
Abstract:
Terrain correction is a necessarystep in interpreting remote sensing images. The performances of terrain correction modelsquite depend on varied terrains and image scales, whichrestricted applicability of these models. Unfortunately, there was still a lack of comprehensiveverification and comparison of theseterrain correction models.
This study aimed to explore the applicability of terrain correction models for different terrains. Three commonly used semi-empirical terrain correction models, C, SCS+C and Minnaert, were evaluated underfour typical terrains of remote sensing images(plateau, mountain, basin and peak). The correction effect of the models under different terrain conditions were compared by using visual, correlation and statistical analysis methods.
This research found(1)the C model had the best performance in plateau area, which was able to reduce the linear regression slope and coefficient of determination(R2)between image reflectance and the cosine of solar incidence angle significantly.It highlyreduced the interquartile range(IQR)of each band, especially in the near-infrared band, with a decrease by 26%.(2)The SCS+C model was more applicable in mountainous areas because it accounted for the geotropic nature of trees(vertical growth). It had a low coefficient of determination of 0.003, with a large reduction in the interquartile range for each band.(3)The Minnaert model took into account of the bidirectional reflectance of surfaces, which improved its correction effect in basin sample areas. After correction, it had a low correlation value of 0.008, which indicated that this model weakened the correlation between image reflectance and the cosine of solar incidence angle more than the other two models. It also had a larger IQR reduction than other models.(4)In peak cluster area, the images were over correction by the C model and the SCS+C model; the Minnaert model had better correction performance but further improvements were needed in shadow region.
This study provides technical support for data processing of remote sensing images.

参考文献/References:

[1] 王少楠, 李爱农. 地形辐射校正模型研究进展[J]. 国土资源遥感, 2012, 24(2): 1-6. [WANG Shaonan, LI Ainong. The progress in the study of topographic radiometric correction models [J]. Remote Sensing for Land and Resources, 2012, 24(2): 1-6] DOI: 10.6046/gtzyyg.2012.02.01
[2] 梁顺林, 白瑞, 陈晓娜, 等. 2019 年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618-671. [LIANG Shunlin, BAI Rui, CHEN Xiaona, et al. Review of China's land surface quantitative remote sensing development in 2019 [J]. Journal of Remote Sensing(Chinese), 2020, 24(6): 618-671] DOI: 10.11834/jrs.20209476
[3] 吴岩真, 闻建光, 王佐成, 等. 遥感影像地形与大气校正系统设计与实现[J]. 遥感技术与应用, 2015, 30(1): 106-114. [WU Yanzhen, WEN Jianguang, WANG Zuocheng, et al. Design and realization of topographic and atmospheric correction system for remote sensing image [J]. Remote Sensing Technology and Application, 2015, 30(1): 106-114] DOI: 10.11873/j.issn.1004-0323.2015.1.0106
[4] 段四波, 阎广建. 山区遥感图像地形校正模型研究综述[J]. 北京师范大学学报(自然科学版), 2007, 43(3): 362-366. [DUAN Sibo, YAN Guangjian. A review of models for topographic correction of remotely sensed images in mountainous area [J]. Journal of Beijing Normal University(Natural Science), 2007, 43(3): 362-366] DOI: 10.3321/j.issn: 0476-0301.2007.03.025
[5] BARALDI A, GIRONDA M, SIMONETTI D. Operational two-stage stratified topographic correction of spaceborne multispectral imagery employing an automatic spectral-rule-based decision-tree preliminary classifier [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(1): 112-146. DOI: 10.1109/TGRS.2009.2028017
[6] VINCINI M, FRAZZI E. Multitemporal evaluation of topographic normalization methods on deciduous forest TM data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2586-2590. DOI: 10.1109/TGRS.2003.817416
[7] SANTINI F, PALOMBO A. Physically based approach for combined atmospheric and topographic corrections [J]. Remote Sensing, 2019, 11(10): 1218. DOI: 10.3390/rs11101218
[8] YIN Gaofei, LI Ainong, WU Shengbiao, et al. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction [J]. Remote Sensing of Environment, 2018, 215: 184-198. DOI: 10.1016/j.rse.2018.06.009
[9] LI Ainong, WANG Qingfang, BIAN Jinhu, et al. An improved physics-based model for topographic correction of Landsat TM images [J]. Remote Sensing, 2015, 7(5): 6296-6319. DOI: 10.3390/rs70506296
[10] TEILLET P M, GUINDON B, GOODENOUGH D G. On the slope-aspect correction of multispectral scanner data [J]. Canadian Journal of Remote Sensing, 1982, 8(2): 84-106. DOI: 10.1080/07038992.1982.10855028
[11] 黄微, 张良培, 李平湘. 一种顾及空间相关性遥感影像辐射度的地形校正算法[J]. 测绘学报, 2006, 35(3): 285-290. [HUANG Wei, ZHANG Liangpei, LI Pingxiang. A topographic correction approach for radiation of RS images by using spatial context information [J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(3): 285-290] DOI: 10.3321/j.issn: 1001-1595.2006.03.017
[12] SOENEN S A, PEDDLE D R, COBURN C A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2148-2159. DOI: 10.1109/TGRS.2005.852480
[13] SMITH J A, LIN T L, RANSON K J. The Lambertian assumption and Landsat data [J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(9): 1183-1189.
[14] MA Yichuan, HE Tao, LI Ainong, et al. Evaluation and intercomparison of topographic correction methods based on landsat images and simulated data [J]. Remote Sensing, 2021, 13(20): 4120. DOI: 10.3390/rs13204120
[15] 王飒, 李熙, 张奇, 等. Landsat 影像地形校正方法的适用性分析[J]. 华中师范大学学报(自然科学版),2013, 47(4): 571-577. [WANG Sa, LI Xi, ZHANG Qi, et al. Analysis on the applicability of the topographic correction models for Landsat images [J]. Journal of Huazhong Normal University(Natural Sciences), 2013, 47(4): 571-577] DOI: 10.3969/j.issn.1000-1190.2013.04.027
[16] 穆悦, 安裕伦, 王喆, 等. 不同地形校正模型计算地形复杂山区地表反射率的对比[J]. 山地学报, 2014, 32(3): 257-266. [MU Yue, AN Yulun, WANG Zhe, et al. Comparison of different topographic correction models for surface reflectance calculating in rugged terrain area [J]. Mountain Research, 2014, 32(3): 257-266] DOI: 10.3969/j.issn.1008-2786.2014.03.001
[17] 陈建珍, 何超, 寇卫利. 高山峡谷地区遥感图像地形校正[J]. 山地学报, 2016, 34(5): 623-631. [CHEN Jianzhen, HE Chao, KOU Weili. Topographic correction of remote sensing image at high mountain and gorge regions [J]. Mountain Research, 2016, 34(5): 623-631] DOI: 10.16089/j.cnki.1008-2786.000170
[18] 张琦. Landsat8遥感影像地形辐射校正研究[D]. 北京: 中国地质大学(北京),2020: 1-58. [ZHANG Qi. Topographic radiation correction based on Landsat 8 remote sensing image [D]. Beijing: China University of Geosciences(Beijing), 2020: 1-58]
[19] JIN Huaan, LI Ainong, XU Weixing, et al. Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 176-188. DOI: 10.1016/j.isprsjprs.2019.06.008
[20] 林兴稳, 闻建光, 吴胜标, 等. 地表反射率地形校正物理模型与效果评价方法研究进展[J]. 遥感学报, 2020, 24(8): 958-974. [LIN Xingwen, WEN Jianguang, WU Shengbiao, et al. Advances in topographic correction methods for optical remote sensing imageries [J]. Journal of Remote Sensing(Chinese), 2020, 24(8): 958-974] DOI: 10.11834/jrs.20209167
[21] CHASTAIN R, HOUSMAN I, GOLDSTEIN J, et al. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States [J]. Remote Sensing of Environment, 2019, 221: 274-285. DOI: 10.1016/j.rse.2018.11.012
[22] 林起楠, 黄华国, 陈玲, 等. 陡峭山区影像的半经验地形校正[J]. 遥感学报, 2017, 21(5): 776-784. [LIN Qinan, HUANG Huaguo, CHEN Ling, et al. Topographic correction method for steep mountain terrain images [J]. Journal of Remote Sensing, 2017, 21(5): 776-784] DOI: 10.11834/jrs.20176384
[23] 柳潇, 吕新彪, 吴春明, 等. 面向高空间分辨率遥感影像的山区地形校正方法[J]. 地球科学, 2020, 45(2): 645-662. [LIU Xiao, LYU Xinbiao, WU Chunming, et al. Topographic correction method for high spatial resolution remote sensing data in mountainous area [J]. Earth Science, 2020, 45(2): 645-662] DOI: 10.3799/dqkx.2019.012

相似文献/References:

[1]穆 悦,安裕伦,王 喆,等.不同地形校正模型计算地形复杂山区地表反射率的对比[J].山地学报,2014,(03):257.
 MU Yue,AN Yulun,WANG Zhe,et al.Comparison of Different Topographic Correction Models for Surface Reflectance Calculating in Rugged Terrain Area[J].Mountain Research,2014,(5):257.
[2]卿文武,陈仁升.天山南坡科其喀尔巴西冰川消融估算[J].山地学报,2009,(04):394.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-03-17; 改回日期(Accepted date):2023-10-08
基金项目(Foundation item): 国家自然科学基金(42361052); 广西自然科学基金(2022GXNSFBA035639); 广西空间信息与测绘重点实验室开放基金(桂科能19-050-11-23)。[National Natural Science Foundation of China(42361052); Guangxi Natural Science Foundation(2022GXNSFBA035639); Guangxi Key Laboratory of Spatial Information and Geomatics Program(GuiKeNeng 19-050-11-23)]
作者简介(Biography): 晏红波(1983-),女,河北唐山人,博士,副教授,主要研究方向:遥感数据智能处理及地表参数变化监测。[YAN Hongbo(1983-), female, born in Tangshan, Hebei province, Ph.D., associate professor, research on intelligent processing of remote sensing data and monitoring of surface parameter changes] E-mail: 2009019@glut.edu.cn
更新日期/Last Update: 2023-09-30