参考文献/References:
[1] 范宣梅, 王欣, 戴岚欣, 等. 2022年MS6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504-1516. [FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of MS6.8 Luding Earthquake occurred on September 5, 2022 [J]. Journal of Engineering Geology, 2022, 30(5): 1504-1516] DOI: 10.13544/j.cnki.jeg.2022-0665
[2] 颜照坤, 李勇, 黄润秋, 等. 汶川MS8.0地震驱动的同震及震后地质灾害空间分布[J]. 四川地震, 2011(4): 1-7. [YAN Zhaokun, LI Yong, HUANG Runqiu, et al. The spatial distribution of coseismal geological disasters triggered by the 2008 Wenchuan MS8.0 Earthquake [J]. Earthquake Research in Sichuan, 2011(4): 1-7]
[3] 唐川, 梁京涛. 汶川震区北川9.24暴雨泥石流特征研究[J]. 工程地质学报, 2008, 16(6): 751-758. [TANG Chuan, LIANG Jingtao. Characteristics of debris flows in Beichuan epicenter of the Wenchuan Earthquake triggered by rainstorm on September 24, 2008 [J]. Journal of Engineering Geology, 2008, 16(6): 751-758]
[4] 许强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 2010, 18(5): 596-608. [XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan province: Characteristics, genetic mechanism and suggestions [J]. Journal of Engineering Geology, 2010, 18(5): 596-608]
[5] SHIEH C L, CHEN Y S, TSAI Y J. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China [J]. International Journal of Sediment Research, 2009, 24(2): 177-188.
[6] ZHANG S, ZHANG L M. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area [J]. Geomorphology, 2017, 276: 86-103. DOI: 10.1016/j.geomorph.2016.10.009
[7] YU Bin, WU Yufu, CHU Shengming. Preliminary study of the effect of earthquakes on the rainfall threshold of debris flows [J]. Engineering Geology, 2014, 182: 130-135. DOI: 10.1016/j.enggeo.2014.04.007
[8] 余斌, 朱渊, 王涛, 等. 沟床起动型泥石流预报研究[J]. 工程地质学报, 2014, 22(3): 450-455. [YU Bin, ZHU Yuan, WANG Tao, et al. Prediction model for occurrence of debris flow in channels with runoff initiation mechanism [J]. Journal of Engineering Geology, 2014, 22(3): 450-455] DOI: 10.13544/j.cnki.jeg.2014.03.014
[9] 余斌, 朱渊, 王涛, 等. 沟床起动型泥石流的10 min降雨预报模型[J]. 水科学进展, 2015, 26(3): 347-355. [YU Bin, ZHU Yuan, WANG Tao, et al. Research on the 10-minute rainfall prediction model for debris flows [J]. Advances in Water Science, 2015, 26(3): 347-355] DOI: 10.14042 /j.cnki.32.1309.2015.03.006
[10] 余斌, 杨凌崴, 刘清华, 等. 基于沟床宽度与颗粒粒径的泥石流精细化预报模型[J]. 地球科学, 2020, 45(4): 1447-1456. [YU Bin, YANG Lingwei, LIU Qinghua, et al. A precise prediction model on debris flows caused by runoff mechanism based on channel width and particle size [J]. Earth Science, 2020, 45(4): 1447-1456] DOI: 10.3799/dqkx.2019.131
[11] 赵岩, 郑娇玉, 郭鹏, 等. ImageJ软件在泥石流固体颗粒分析中的应用[J]. 兰州大学学报(自然科学版), 2015, 51(6): 877-881. [ZHAO Yan, ZHENG Jiaoyu, GUO Peng, et al. Applications of the ImageJ software in analysis of solid grains in a debris flow gully [J]. Journal of Lanzhou University(Natural Sciences), 2015, 51(6): 877-881] DOI: 10.13885/j.issn.0455-2059.2015.06.020
[12] 彭双麒, 许强, 李骅锦, 等. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报, 2019, 27(6): 1290-1301. [PENG Shuangqi, XU Qiang, LI Huajin, et al. Grain size distribution analysis of landslide deposits with reliable image identification [J]. Journal of Engineering Geology, 2019, 27(6): 1290-1301] DOI: 10.13544/j.cnki.jeg.2018-305
[13] 彭双麒, 许强, 郑光, 等. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术, 2020, 51(2): 144-154. [PENG Shuangqi, XU Qiang, ZHENG Guang, et al. Recognition and analysis of deposit body grain of Baige landslide-debris flow [J]. Water Resources and Hydropower Engineering, 2020, 51(2): 144-154] DOI:10.13928/j.cnki.wrahe.2020.02.017
[14] 刘朋恩, 刘文连, 许汉华, 等. 基于SEM及PCAS的白云岩溶蚀孔隙结构量化评价研究[J]. 地质灾害与环境保护, 2023, 34(1): 59-63. [LIU Peng'en, LIU Wenlian, XU Hanhua, et al. Quantitative evaluation of dolomite dissolution pore structure based on SEM and PCAS [J]. Journal of Geological Hazards and Environment Preservation, 2023, 34(1): 59-63]
[15] 徐今星, 杨根兰, 梁风, 等. 崩积体粒径的图像识别与分析[J]. 科学技术与工程, 2021, 21(26): 11084-11093. [XU Jinxing, YANG Genlan, LIANG Feng, et al. Image recognition and analysis of the particle size of collapsed deposits [J]. Science Technology and Engineering, 2021, 21(26): 11084-11093]
[16] 闫高原, 韦重韬, 宋昱, 等. 基于Ar-SEM及PCAS页岩孔隙结构定量表征[J]. 地球科学, 2018, 43(5): 1602-1610. [YAN Gaoyuan, WEI Chongtao, SONG Yu, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS [J]. Earth Science, 2018, 43(5): 1602-1610] DOI: 10.3799/dqkx.2017.525
[17] 张佳佳, 陈龙, 李元灵, 等. 2022年9月5日泸定MS6.8地震的同震地质灾害发育特征及主控因素分析[J]. 地震学报, 2023, 45(2): 167-178. [ZHANG Jiajia, CHEN Long, LI Yuanling, et al. Development characteristics and controlling factors of co-seismic geo-hazards triggered by the Luding MS6.8 earthquake on September 5, 2022 [J]. Acta Seismologica Sinica, 2023, 45(2): 167-178] DOI:10.11939/jass.20220215
[18] LIU Xuemei, SU Pengcheng, LI Yong, et al. Spatial distribution of landslide shape induced by Luding Ms6.8 earthquake, Sichuan, China: Case study of the Moxi Town [J]. Landslides, 2023, 20: 1667-1678. DOI: 10.1007/s10346-023-02070-2
[19] 彭桂花. 基于无人机航空摄影测量DOM制作质量控制[J]. 测绘与空间地理信息, 2022, 45(9): 195-197. [PENG Guihua. Quality control of orthophoto production based on UAV aerial photogrammetry [J]. Geomatics and Spatial Information Technology, 2022, 45(9): 195-197]
[20] 殷俊. 基于BIM三维构件的隧道施工进度精细化管理研究[D]. 南京: 东南大学, 2020: 10. [YIN Jun. Study on lean management of tunnel construction schedule based on BIM three-dimensional components [D]. Nanjing: Southeast University, 2020: 10] DOI: 10.27014/d.cnki.gdnau.2020.002150
[21] 刘学军, 卢华兴, 仁政, 等. 论DEM地形分析中的尺度问题[J]. 地理研究, 2007, 26(3): 433-442. [LIU Xuejun, LU Huaxing, REN Zheng, et al. Scale issues in digital terrain analysis and terrain modeling [J]. Geographical Research, 2007, 26(3): 433-442]
[22] 韩林, 余斌, 鲁科. 泥石流暴发频率与其形成区块石粒径的关系[J]. 长江流域资源与环境, 2011, 20(9): 1149-1156. [HAN Lin, YU Bin, LU Ke. Relationship of frequency of debris flows and the particle size in the channel [J]. Resources and Environment in the Yangtze Basin, 2011, 20(9): 1149-1156]
[23] LIU Chun, SHI Bin, ZHOU Jian, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials [J]. Applied Clay Science, 2011, 54(1): 97-106. DOI: 10.1016/j.clay.2011.07.022
[24] 刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925-931.[ LIU Chun, XU Qiang, SHI Bin, et al. Digital image recognition method of rock particle and pore system and its application [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931] DOI: 10.11779/CJGE201805018
[25] GONZALEZ R C, WOODS R E. Digital image processing [M]. New Jersey: Publishing House of Electronics Industry, 2017: 31.
[26] YU Weiwei,HE Fei,XI Ping. A rapid 3D seed-filling algorithm based on scan slice [J]. Computers and Graphics, 2010, 34(4): 449-459. DOI: 10.1016/j.cag.2010.05.005
[27] 邓辉. 基于遥感和GIS的泸定县生态地质环境质量评价[D]. 成都: 成都理工大学, 2011: 10. [DENG Hui. Assessment of eco-geological environment quality in Luding based on GIS and RS [D]. Chengdu: Chengdu University of Technology, 2011: 10]
[28] 陈文鸿, 余斌, 柳清文, 等. 北京山区泥石流的单沟预报[J]. 长江科学院院报, 2023, 40(1): 94-100+115. [CHEN Wenhong, YU Bin, LIU Qingwen, et al. Forecast of single ditch debris flow in mountainous area of Beijing [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(1): 94-100+115] DOI: 10.11988/ckyyb.20210760
[29] 沈毅, 露丹. 泸定县泥石流灾害特征及降水因子分析[J]. 高原山地气象研究, 2014, 34(2): 81-85+90. [SHEN Yi, LU Dan. Characteristics of debris flow disaster and precipitation factor analysis in Luding [J]. Plateau and Mountain Meteorological Research, 2014, 34(2): 81-85+90] DOI: 10.3969/j.issn.1674-2148·2014.2.016
[30] 王玉婕, 张丽芬, 孙晓丹, 等. 2022年四川泸定MS6.8地震近场强震动模拟[J]. 大地测量与地球动力学, 2023, 43(5): 441-446+516. [WANG Yujie, ZHANG Lifen, SUN Xiaodan, et al. Near-field strong motion simulation of the 2022 Luding MS6.8 earthquake in Sichuan province [J]. Journal of Geodesy and Geodynamics, 2023, 43(5): 441-446+516] DOI: 10.14075/j.jgg.2023.05.001