[1]尹 超,李仲波,张 凯,等.基于Inter.iamb-Tabu算法的区域滑坡敏感性评价[J].山地学报,2023,(4):608-620.[doi:10.16089/j.cnki.1008-2786.000774 ]
 YIN Chao,LI Zhongbo,ZHANG Kai,et al.Regional Landslide Susceptibility Assessment Based on Inter.Iamb-Tabu Algorithm[J].Mountain Research,2023,(4):608-620.[doi:10.16089/j.cnki.1008-2786.000774 ]
点击复制

基于Inter.iamb-Tabu算法的区域滑坡敏感性评价
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第4期
页码:
608-620
栏目:
山地技术
出版日期:
2023-07-20

文章信息/Info

Title:
Regional Landslide Susceptibility Assessment Based on Inter.Iamb-Tabu Algorithm
文章编号:
1008-2786-(2023)4-608-13
作者:
尹 超1李仲波1张 凯2王绍平3郭 兵3
(1. 山东理工大学 建筑工程与空间信息学院,山东 淄博 255049; 2. 山东金鼎智达集团有限公司,山东 淄博 255049; 3. 日照城投建设集团有限公司,山东 日照 276800)
Author(s):
YIN Chao1LI Zhongbo1ZHANG Kai2WANG Shaoping3GUO Bing3
(1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255049, Shandong, China; 2. Shandong Jinding Zhida Group Co., Ltd., Zibo 255049, Shandong, China; 3. Rizhao City Construction Investment Group Co., Ltd., Rizhao 276800, Shandong, China)
关键词:
滑坡敏感性评价 致灾因子 贝叶斯网络 Inter.iamb-Tabu算法
Keywords:
landslide susceptibility assessment landslide-triggering factor Bayesian Network Inter.iamb-Tabu algorithm
分类号:
P694
DOI:
10.16089/j.cnki.1008-2786.000774
文献标志码:
A
摘要:
确定滑坡敏感性概率的空间分布,可为滑坡防治政策制定和土地利用规划提供科学依据。由于成灾环境的空间差异和滑坡机理的复杂性,基于不同逻辑架构(物理模型、理论模型等)的滑坡敏感性评价针对特定孕灾环境,无法提前确定最优数学评价模型,而基于深度学习法的、融合多种模型的混合算法能较好地解决这个问题。本文以山东省淄博市博山区为研究区域,基于单因素Logistic回归法筛选了滑坡致灾因子,通过频率比法对致灾因子进行了分级; 对4种基于贝叶斯网络的改进算法(MMHC、MMPC-Tabu、Fast.iamb-Tabu、Inter.iamb-Tabu)进行验证,引入错误指数确定了建模效果最佳的算法; 计算了博山区774 570个栅格的滑坡敏感性概率,绘制了博山区滑坡敏感性分布图; 基于GIS的空间叠加和栅格计算器功能,对比了各模型的滑坡敏感性评价结果。研究结果表明:(1)基于 Inter.iamb-Tabu开展博山区滑坡敏感性建模时效果最佳。该模型包含10个节点(9个致灾因子节点和1个结局节点)、14条有向边。研究区域可划分为极高敏感区、高敏感区、中敏感区、低敏感区和极低敏感区,分别占总面积的7.30%(49.80 km2)、16.50%(112.56 km2)、26.10%(178.05 km2)、33.20%(226.49 km2)和16.90%(115.29 km2),分别有67处、22处、7处、2处和1处滑坡位于上述敏感区。(2)MMHC、MMPC-Tabu和Fast.iamb-Tabu模型在训练时易舍弃样本中部分因子的特征信息,以达到模型整体精度最优的目的。研究成果可为山东省淄博市博山区滑坡防治提供理论依据,采用的研究方法同样适用于类似地区。
Abstract:
Determining the spatial distribution of landslide susceptibility probability can provide scientific basis for landslide prevention policy making and land use planning. Due to the spatial differentiation of geo-disaster-prone environment and the complexity of landslide formation, landslide susceptibility evaluation based on different logical frameworks(physical model, theoretical model, etc.)cannot determine the optimal mathematical evaluation model in advance for specific geo-environment, while the hybrid algorithm based on deep learning method and integrating of multiple models can better solve this problem. In this study, it took Boshan district of Zibo city, Shandong province of China for a case study. It selected landslide-triggering factors by using univariate logistic regression method, and weighed them by frequency ratio method. Based on Bayesian Network, four improved algorithms, i.e., MMHC, MMPC-Tabu, Fast.iamb-Tabu and Inter.iamb-Tabu were verified for suitability, followed by the best algorithm to be determined for landslide susceptibility assessment by introducing the error exponent into all models. Landslide susceptibility probabilities of 774 570 grids in Boshan district were calculated and the resulting zoning map was plotted. Based on the spatial overlay and raster calculator function of GIS, the landslide susceptibility assessment results of each model were compared. This research found(1)the Inter.iamb-Tabu model had the best performance in landslide susceptibility assessment. It contained 10 nodes(9 landslide-triggering factor nodes and 1 ending node)and 14 directed edges. Accordingly, Boshan district could be zoned into five areas, i.e., extremely high susceptible areas, high susceptible areas, medium susceptible areas, low susceptible areas and extremely low susceptible areas, accounting for 7.30%(49.80 km2), 16.50%(112.56 km2), 26.10%(178.05 km2), 33.20%(226.49 km2)and 16.90%(115.29 km2)of the whole areas of Boshan district, respectively. There were 67, 22, 7, 2 and 1 landslide identified in aforesaid five respective areas.(2)In MMHC, MMPC-Tabu and Fast.iamb-Tabu model, part of feature information of some landslide-triggering factor was likely to be skipped over in training samples for the best overall accuracy of the model. The research can provide theoretical basis for landslide control in Boshan district, and the proposed landslide susceptibility assessment is also applicable to geohazard susceptibility delineation in similar areas.

参考文献/References:

[1] CHEN Wei, PENG Jianbing, HONG Haoyuan, et al. Landslide susceptibility modeling using GIS-based machine learning techniques for Chongren county, Jiangxi province, China[J]. Science of the Total Environment, 2018, 626: 1121-1135. DOI:10.1016/j.scitotenv.2018.01.124
[2] OUYANG Chaojun, WANG Zhongwen, AN Huicong, et al. An example of a hazard and risk assessment for debris flows: A case study of Niwan Gully, Wudu, China[J]. Engineering Geology, 2019, 263: 105351. DOI:10.1016/j.enggeo.2019.105351
[3] YIN Chao, ZHANG Jinglei. Hazard regionalization of debris-flow disasters along highways in China[J]. Natural Hazards, 2018, 91(2): S129-S147. DOI:10.1007/s11069-018-3229-8
[4] MAO Yimin, MWAKAPESA D S, LI Yican, et al. Assessment of landslide susceptibility using DBSCAN-AHD and LD-EV methods[J]. Journal of Mountain Science, 2022, 19(1): 184-197. DOI:10.1007/s11629-020-6491-7
[5] SHOJAEEZADEH S A, NIKOO M R, MIRCHI A, et al. Probabilistic hazard assessment of contaminated sediment in rivers[J]. Science of the Total Environment, 2020, 703: 134875. DOI:10.1016/j.scitotenv.2019.134875
[6] ZHANG Tingyu, MAO Zhongan, WANG Tao. GIS-based evaluation of landslide susceptibility using a novel hybrid computational intelligence model on different mapping units[J]. Journal of Mountain Science, 2020, 17(12): 2929-2941. DOI:10.1007/s11629-020-6393-8
[7] ZHENG Hao, CHENG Gang, LI Yong, et al. A new fault diagnosis method for planetary gear based on image feature extraction and bag-of-words model[J]. Measurement, 2019, 145: 1-13. DOI:10.1016/j.measurement.2019.05.046
[8] MOGHADDAM S H A, MOKHTARZADE M, BEIRAMI B A. A feature extraction method based on spectral segmentation and integration of hyperspectral images[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102097. DOI:10.1016/j.jag.2020.102097
[9] LIN Qigen, LIMA P, STEGER S, et al. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data[J]. Geoscience Frontiers, 2021, 12: 101248. DOI:10.1016/j.gsf.2021.101248
[10] ZHOU Xinzhi, WEN Haijia, ZHANG Yalan, et al. Landslide susceptibility mapping using hybrid random forest with Geo-Detector and RFE for factor optimization[J]. Geoscience Frontiers, 2021, 12: 101211. DOI:10.1016/j.gsf.2021.101211
[11] 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. [ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296] DOI:10.13722/j.cnki.jrme.2015.0318
[12] TSANGARATOS P, ILIA I. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size[J]. Catena, 2016, 145: 164-179. DOI:10.1016/j.catena.2016.06.004
[13] WU Zening, SHEN Yanxia, WANG Huiliang, et al. Urban flood disaster risk evaluation based on ontology and Bayesian Network[J]. Journal of Hydrology, 2020, 583: 124596. DOI:10.1016/j.jhydrol.2020.124596
[14] MOHAMMADY M, POURGHASEMI H R, PRADHAN B. Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models[J]. Journal of Asian Earth Sciences, 2012, 61: 221-236. DOI:10.1016/j.jseaes.2012.10.005
[15] SUN Deliang, WEN Haijia, WANG Danzhou, et al. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm[J]. Geomorphology, 2020, 362: 107201. DOI:10.1016/j.geomorph.2020.107201
[16] SONG Yiquan, GONG Jianhua, GAO Sheng, et al. Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China[J]. Computers and Geosciences, 2012, 42: 189-199. DOI:10.1016/j.cageo.2011.09.011
[17] COSTACHE R, BUI D T. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania[J]. Science of the Total Environment, 2019, 691: 1098-1118. DOI:10.1016/j.scitotenv.2019.07.197
[18] 高晓梅, 秦增良, 王令军, 等. 鲁中山区地质灾害的气候特征分析[J]. 科技导报, 2012, 30(4): 55-60. [GAO Xiaomei, QIN Zengliang, WANG Lingjun, et al. The climatic characteristics of geological calamity in the mountainous area of the middle part of Shandong province[J]. Science and Technology Review, 2012, 30(4): 55-60] DOI:10.3981/.issn.1000-7857.2012.04.008
[19] 姜川, 曲宝杰, 董强, 等. 基于GIS的淄博市地质灾害预警预报系统建设[J]. 山东国土资源, 2014, 30(3):89-91. [JIANG Chuan, QU Baojie, DONG Qiang, et al. Construction of geological disasters warning system based on GIS in Zibo city[J]. Shandong Land and Resources, 2014, 30(3): 89-91]
[20] 孙强, 史清明.基于GIS的城市地震灾害风险区划研究——以淄博市为例[J]. 四川地震, 2020(2): 19-24. [SUN Qiang, SHI Qingming. Study on the risk zoning of urban earthquake disaster based on GIS-take ZiBo city as an example[J]. Earthquake Research in Sichuan, 2020(2): 19-24] DOI:10.13716/i.cnki.1001-8115.2020.02.004
[21] CHEN Wei, XIE Xiaoshen, PENG Jianbing, et al. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method[J]. Catena, 2018, 164: 135-149. DOI:10.1016/j.catena.2018.01.012
[22] KHALAJ S, BAHOOTOROODY F, ABAEI M M, et al. A methodology for uncertainty analysis of landslides triggered by an earthquake[J]. Computers and Geotechnics, 2020, 117: 103262. DOI:10.1016/j.compgeo.2019.103262
[23] YILMAZ I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides(Tokat-Turkey)[J]. Computers and Geosciences, 2009, 35(6): 1125-1138. DOI:10.1016/j.cageo.2008.08.007
[24] ADITIAN A, KUBOTA T, SHINOHARA Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia[J]. Geomorphology, 2018, 318: 101-111. DOI:10.1016/j.geomorph.2018.06.006
[25] BOLLMANN S, KRISTENSEN M H, LARSEN M S, et al. SHARQnet-Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network[J]. Zeitschrift für Medizinische Physik, 2019, 29(2): 139-149. DOI:10.1016/j.zemedi.2019.01.001
[26] WANG Yi, FANG Zhice, HONG Haoyuan. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan county, China[J]. Science of the Total Environment, 2019, 666: 975-993. DOI:10.1016/j.scitotenv.2019.02.263
[27] MICHALOWSKI R L, PARK D. Stability assessment of slopes in rock governed by the Hoek-Brown strength criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104217. DOI:10.1016/j.ijrmms.2020.104217
[28] NSEKA D, KAKEMBO V, BAMUTAZE Y, et al. Analysis of topographic parameters underpinning landslide occurrence in Kigezi highlands of southwestern Uganda[J]. Natural Hazards, 2019, 99(2): 973-989. DOI:10.1007/s11069-019-03787-x
[29] EBID A H I M, ALI Z T, GHOBARY M A F. Blood pressure control in hypertensive patients: Impact of an Egyptian pharmaceutical care model[J]. Journal of Applied Pharmaceutical Science, 2014, 4(9): 93-101. DOI:10.7324/JAPS.2014.40917
[30] KIM H, LEE J H, PARK H J, et al. Assessment of temporal probability for rainfall-induced landslides based on nonstationary extreme value analysis[J]. Engineering Geology, 2021, 294: 106372. DOI:10.1016/j.enggeo.2021.106372
[31] CONFORTI M, IETTO F. Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors, through a GIS-based statistical analysis[J]. Geosciences, 2021, 11(8): 333. DOI:10.3390/geosciences11080333
[32] 钟坤华, 陈芋文, 秦小林. 基于子网融合的贝叶斯网络结构学习算法[J]. 计算机科学, 2022, 49(S2): 64-70. [ZHONG Kunhua, CHEN Yuwen, QIN Xiaolin. Sub-BN-Merge based bayesian network structure learning algorithm[J]. Computer Science, 2022, 49(S2): 64-70] DOI:10.11896/jsjkx.210800172
[33] SONG Wenzhu, QIU Lixia, QING Jianbo, et al. Using Bayesian network model with MMHC algorithm to detect risk factors for stroke[J]. Mathematical Biosciences and Engineering: MBE, 2022, 19(12): 13660-13674. DOI:10.3934/MBE.2022637
[34] 潘金花. 基于Inter.iamb-Tabu混合算法的贝叶斯网络效果评价及在高脂血症相关因素研究中的应用[D]. 太原: 山西医科大学, 2019: 1-58. [PAN Jinhua. Evaluation of Bayesian networks based on Inter.iamb-Tabu hybrid algorithm and its application in analyzing the relating factors of hyperlipidemia[D]. Taiyuan: Shanxi Medical University, 2019: 1-58]
[35] YANG Xianglin, WANG Yujing, OU Yang, et al. Three-Fast-Inter Incremental Association Markov Blanket learning algorithm[J]. Pattern Recognition Letters, 2019, 122: 73-78. DOI:10.1016/j.patrec.2019.02.002
[36] ERTUNCAY D, COSTA G. Determination of near-fault impulsive signals with multivariate Naïve Bayes method[J]. Natural Hazards, 2021, 108(2): 1763-1780. DOI:10.1007/S11069-021-04755-0
[37] LEE Sunmin, LEE M J, JUNG H S, et al. Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea[J]. Geocarto International, 2020, 35(15): 1665-1679. DOI:10.1080/10106049.2019.1585482
[38] ZHOU Yusheng, LI Xue, YUEN K F. Holistic risk assessment of container shipping service based on Bayesian Network Modelling[J]. Reliability Engineering and System Safety, 2022, 220: 108305. DOI:10.1016/j.ress.2021.108305
[39] LI Tingting, ZHOU Yangze, ZHAO Yang, et al. A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems[J]. Applied Energy, 2022, 306(PB): 118088. DOI:10.1016/j.apenergy.2021.118088
[40] MUKHAMMADZODA S, SHOHNAVAZ F, ILHOMJON O, et al. Application of frequency ratio method for landslide susceptibility mapping in the Surkhob valley, Tajikistan[J]. Journal of Geoscience and Environment Protection, 2021, 9: 168-189. DOI:10.4236/gep.2021.912011
[41] LI Ming, ZHANG Ren, LIU Kefeng. A new marine disaster assessment model combining Bayesian network with information diffusion[J].Journal of Marine Science and Engineering, 2021, 9(6): 640. DOI:10.3390/jmse9060640
[42] YIN Chao, LI Haoran, CHE Fa, et al. Susceptibility mapping and zoning of highway landslide disasters in China[J]. PLoS ONE, 2020, 15(9): e0235780. DOI:10.1371/journal.pone.0235780
[43] ZÊZERE J L, PEREIRA S, MELO R, et al. Mapping landslide susceptibility using data-driven methods[J]. Science of the Total Environment, 2017, 589: 250-267. DOI:10.1016/j.scitotenv.2017.02.188
[44] BERHANE G, KEBEDE M, ALFARAH N, et al. Landslide susceptibility zonation mapping using GIS-based frequency ratio model with multi-class spatial data-sets in the Adwa-Adigrat mountain chains, northern Ethiopia[J]. Journal of African Earth Sciences, 2020, 164: 103795. DOI:10.1016/j.jafrearsci.2020.103795
[45] DU Juan, GLADE T, WOLDAI T, et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas[J]. Engineering Geology, 2020, 270: 105572. DOI:10.1016/j.enggeo.2020.105572
[46] ZHANG Han, YIN Chao, WANG Shaoping, et al. Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks[J]. Natural Hazards, 2023, 116: 1931-1971. DOI:10.1007/s11069-022-05748-3

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-12- 03; 改回日期(Accepted date): 2023- 07- 09
基金项目(Foundation item): 国家自然科学基金青年科学基金(51808327); 山东省自然科学基金(ZR2019PEE016,ZR2021MD011)[Young Scientists Fund of the National Natural Science Foundation of China(51808327); Natural Science Foundation of Shandong Province(ZR2019PEE016, ZR2021MD011)]
作者简介(Biography): 尹超(1987-),男,博士,副教授,主要研究方向:公路自然灾害风险评价[YIN Chao,(1987-), male, Ph.D., associate professor, research on risk assessment of road natural disasters] E-mail: yinchao1987611@163.com
更新日期/Last Update: 2023-07-30