[1]宋国虎,杨桢贤*,张 继,等.四川雅安市宝兴县和平沟泥石流防治工程成效考察[J].山地学报,2023,(2):295-306.[doi:10.16089/j.cnki.1008-2786.000749]
 SONG Guohu,YANG Zhenxian*,ZHANG JI,et al.Post-Shock Performance of A Debris Flow Dam Built at the Heping Gully, Baoxing County, Sichuan Province, China[J].Mountain Research,2023,(2):295-306.[doi:10.16089/j.cnki.1008-2786.000749]
点击复制

四川雅安市宝兴县和平沟泥石流防治工程成效考察
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第2期
页码:
295-306
栏目:
研究简报
出版日期:
2023-03-25

文章信息/Info

Title:
Post-Shock Performance of A Debris Flow Dam Built at the Heping Gully, Baoxing County, Sichuan Province, China
文章编号:
1008-2786-(2023)2-295-12
作者:
宋国虎12杨桢贤12*张 继12杨 军12
(1. 四川省第一地质大队,成都 610072; 2. 四川省地质工程勘察院集团有限公司,成都 610072)
Author(s):
SONG Guohu12YANG Zhenxian12*ZHANG JI12YANG Jun12
(1. The 1st Geological Brigade of Sichuan Province. Chengdu 610072, China; 2. Sichuan Institute of Geological Engineering Investigation Group Co., Ltd., Chengdu 610072, China)
关键词:
地震灾区 防治工程 运行效果 和平沟
Keywords:
earthquake-hit area debris flow dam performance the Heping gully
分类号:
X43; XP15.5; P315; P694
DOI:
10.16089/j.cnki.1008-2786.000749
文献标志码:
C
摘要:
和平沟位于四川省芦山地震灾区雅安市宝兴县北部的硗碛乡境内,沟内防治工程历经约10余年运行,发挥了巨大的减灾作用。但随着防治工程的运行,工程有效性逐步降低。2020年“8·16”强降雨后防治工程基本失效,泥石流冲出沟口形成灾害。本文通过现场实地调查,分析和平沟泥石流的致灾机制与防治工程运行效果,探讨针对已实施防治工程泥石流的防灾减灾思路。结果表明:(1)治理工程完成后,拦挡工程经历了“发挥效益→逐步淤积→库内沟床抬高→新崩滑物源形成→拦砂坝逐步淤满→翻坝→泥石流翻坝规模放大→致灾”过程;(2)“8·16”泥石流前15日有效累计降雨量达到204.5 mm,当次激发小时雨强为25 mm/h,是本次泥石流的关键激发因素;(3)拦挡工程满库运行,泥石流翻坝后会产生流量及规模产生放大效应,泥石流入射速度较初始速度增加约8.45倍;(4)排导槽在运行过程中表现出 “沟底冲刷侵蚀→侧墙基础掏蚀→侧墙悬空→侧墙失稳倾倒” 的破坏模式;(5)国土空间规划中应充分考虑地质安全以及防治工程设防标准承载能力。同时,对于已实施防治工程的泥石流沟仍不能放松警惕,在防灾减灾中需密切关注其防治工程有效性,及时消除隐患。
Abstract:
The Heping gully is located at Qiaoqi town in the north of Baoxing county, Sichuan province of China, where it suffered a Ms7.0 earthquake in 2013 and Ms6.1 earthquake in 2022, both with the same epicenter at Lushan, a neighboring town to Qiaoqi. The debris flow retaining dam in the gully has functioned normally for almost 10 years since it was built in 2012, which played an active role in geo-disaster control, but it has been running into a stage of deteriorating performance due to long disrepair. In 2020, there was a storm attacking the Heping gully on October 16; the retailing dam failed severely with massive debris flow rushing out of the gully mouth.
We conducted an emergency survey of the debris flow occurrence; the triggering mechanism of the debris flow was analyzed; the poor performance of the debris flow dam was scrutinized for risk assessment.
It found the Heping gully from a state of empty storage capacity in retaining dam after construction completion evolved into a intendancy toward recurrence of debris flow, which can be generalized as a series of phases, including dam working normally→storage capacity of retaining dam decreasing gradually→gully bed behind dam uplifting in the upstream→geo-material accumulating along the gully floor due to slope collapsing→silting up to full in dam storage →debris flow overflowing the dam→debris flow scaling up after overflowing→geo-catastrophe forming.
Rich precedent precipitation and short-term storm were critical factors in debris flow formation. According to field survey, in case a cumulative effective precipitation reach to 204.5 mm in the former 15 days, an hourly rainfall intensity of 25 mm/h was capable of triggering debris flow.
In case of retaining dam in full, the destruction consequence of a debris flow definitely was amplified after overflowing the dam; the incident velocity of a debris flow increased by about 8.45 times compared with its initial velocity.
There was a patter to describe the deterioration process of debris flow drainage flume. It could be divided into four stages: eroding at flume floor→eroding sidewall foundation→sidewall suspending→sidewall toppling or collapsing.
Although some debris flow gullies had already built prevention and control projects in earthquake-hit areas, which performed well in the past, but there are still geohazard risk, which should be pre-cautioned and fully prepared for geo-hazard mitigation. And in national spatial planning, geological safety and the carrying capacity of a prevention and control engineering fortification standards should be included.

参考文献/References:

[1] 崔鹏, 何思明, 姚林侃, 等. 汶川地震山地灾害形成机理与风险控制[M]. 北京: 科学出版社, 2011:15-17. [ CUI Peng, HE Siming, YAO Linkan, et al. The formation mechanism and risk control of mountain disasters caused by the Wenchuan earthquake [M]. Beijing: Science Press, 2011:15-17]
[2] 陈宁生, 周海波, 卢阳, 等. 西南山区泥石流防治工程效益浅析[J]. 成都理工大学学报(自然科学版), 2013, 40(1): 50-58. [CHEN Ningsheng, ZHOU Haibo, LU Yang, et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China [J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2013, 40(1): 50-58] DOI: 10.3969/j.issn.1671-9727.2013.01.008
[3] 曾庆铭, 薛强, 徐继伟. 都江堰市龙池镇黄央沟泥石流特征与防治工程效果分析[J]. 西北地质, 2014, 47(3): 192-199. [ZENG Qingming, XUE Qiang, XU Jiwei. Analysis on the debris flow characteristics and effectiveness of prevention projects in Huangyang Gully in Longchi town of Dujiangyan city [J]. Northwestern Geology, 2014, 47(3): 192-199] DOI: 10.3969/j.issn.1009-6248.2014.03.025
[4] 向龙, 陈宁生, 李俊. 震后白沙河、龙溪河流域泥石流灾害治理效果分析——以四川都江堰市三合场沟为例[J]. 人民长江, 2016, 47(23): 60-64. [XIANG Long, CHEN Ningsheng, LI Jun. Effect analysis of debris flow control in Baisha River basin and Longxi River basin after earthquake: Case of Sanhechang Gully in Dujiangyan city, Sichuan province [J]. Yangtze River, 2016, 47(23): 60-64] DOI: 10.16232/j.cnki.1001-4179.2016.23.013
[5] 周文兵, 柳金峰, 袁东, 等. 白龙江中游泥石流拦砂坝防治效果分析[J]. 长江科学院院报, 2019, 36(6):64-70. [ZHOU Wenbing, LIU Jinfeng, YUAN Dong, et al. Control effect of check dams on debris flow in the midstream of Bailong River [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(9): 64-70] DOI: 10.11988/ckyyb.20180205
[6] 殷志强, 赵无忌, 褚宏亮, 等. “4·20”芦山地震诱发地质灾害基本特征及与“5·12”汶川地震对比分析[J]. 地质学报, 2014, 88(6): 1145-1156. [YIN Zhiqiang, ZHAO Wuji, CHU Hongliang, et al. Basic characteristics of geohazards induced by Lushan earthquake and compare to them of Wenchuan earthquake [J]. Acta Geologica Sinica, 2014, 88(6): 1145-1156] DOI: 10.19762/j.cnki.dizhixuebao.2014.06.015
[7] 崔鹏, 陈晓清, 张建强, 等. “4·20”芦山7·0级地震次生山地灾害活动特征与趋势[J]. 山地学报, 2013, 31(3): 257-265. [CUI Peng, CHEN Xiaoqing, ZHANG Jianqiang, et al. Activities and tendency of mountain hazards induced by the Ms7.0 Lushan earthquake, April 20, 2013 [J]. Mountain Research, 2013, 31(3): 257-265] DOI: 10.16089/j.cnki.1008-2786.2013.03.018
[8] 张文涛,柳金峰,游勇,等. 泥石流岩土防治工程治理效果分析与评价——以四川汶川卧龙幸福沟为例[J].灾害学, 2021, 36(3): 208-214. [ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Analysis and evaluation of the treatment effect of the geotechnical engineering of debris flow: Case of Xingfu Gully in Wolong [J]. Journal of Catastrophology, 2021, 36(3): 208-214] DOI: 10.3969/j.issn.1000-811X.2021.03.036
[9] 宋国虎, 张继, 杨桢贤. 震后泥石流治理工程有效性评价及存在问题分析[J]. 灾害学, 2022, 37(1): 58-67. [SONG Guohu, ZHANG Ji, YANG Zhenxian. Effectiveness evaluation and problems analysis of debris flow control project after earthquake [J]. Journal of Catastrophology, 2022, 37(1): 58-67] DOI: 10.3969/j.issn.1000-811X.2022.01.011
[10] 许强, 李骅锦, 何雨森, 等.文家沟泥石流治理工程效果的定量分析评价[J]. 工程地质学报, 2017, 25(4): 1046-1056. [XU Qiang, LI Huajin, HE Yusen, et al. Quantitative evaluation of engineering treatments for prevention of debris flow at Wenjia Gully [J]. Journal of Engineering Geology, 2017, 25(4): 1046-1056] DOI: 10.13544/j.cnki.jeg.2017.04.019
[11] 亓星, 许强, 余斌, 等. 汶川震区文家沟泥石流治理工程效果分析[J]. 地质科技情报, 2016, 35(1): 161-165. [QI Xing, XU Qiang, YU Bin, et al. Treatment effects in Wenjia Gully, Wenchuan earthquake area [J]. Geological Science and Technology Information, 2016, 35(1): 161-165]
[12] 胡凯衡, 崔鹏, 马超, 等. 宁南县矮子沟“6·28”特大灾害性泥石流成因和特征[J]. 山地学报, 2012, 30(6): 696-700. [HU Kaiheng, CUI Peng, MA Chao, et al. Causes and characteristics of 28 June disastrous debris flow event in Ningnan county of Sichuan, China [J]. Mountain Research, 2012, 30(6): 696-700] DOI: 10.16089/j.cnki.1008-2786.2012.06.016
[13] 崔鹏, 杨坤, 陈杰. 前期降雨对泥石流形成的贡献——以蒋家沟泥石流形成为例[J]. 中国水土保持科学, 2003, 1(1): 11-15. [CUI Peng, YANG Kun, CHEN Jie. Relationship between occurrence of debris flow and antecedent precipitation: Taking the Jiangjia Gully as an example [J]. Science of Soil and Water Conservation, 2003, 1(1): 11-15] DOI: 10.16843/j.sswc.2003.01.006
[14] 张友谊, 钟磊, 樊晓一, 等. 岷江河谷锄头沟震后泥石流致灾模式[J]. 山地学报, 2021, 39(5): 756-766. [ZHANG Youyi, ZHONG Lei, FAN Xiaoyi, et al. The disaster model of debris flows after earthquake at Chutou Gully of Minjiang River Valley, China [J]. Mountain Research, 2021, 39(5): 756-766] DOI: 10.16089/j.cnki.1008-2786.000636
[15] 李祥龙, 唐辉明, 熊承仁, 等. 基底刮铲效应对岩石碎屑流停积过程的影响[J]. 岩土力学,2012, 33(5): 1527-1541. [LI Xianglong, TANG Huiming, XIONG Chengren, et al. Influence of substrate ploughing and erosion effect on process of rock avalanche [J]. Rock and Mechanics, 2012, 33(5): 1527-1541] DOI: 10.16285/j.rsm.2012.05.018
[16] 蔡红刚. 汶川震区泥石流防护工程损毁特征及破坏机制研究[D]. 成都: 成都理工大学, 2012:35-36. [CAI Honggang. Investigation of damage features and study failure mechanism to protection engineering for debris flow in the Wenchuan earthquake region [D]. Chengdu: Chengdu University of Technology, 2012:35-36]

相似文献/References:

[1]王根绪,程根伟.地震灾区重建中有关水文与水环境问题的若干思考[J].山地学报,2008,(04):385.
[2]陈国阶.汶川地震灾区重建若干问题探讨[J].山地学报,2008,(05):518.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-01-30; 改回日期(Accepted date):2023-04-09
基金项目(Foundation item): 四川省地矿局科技创新项目(SCDKZCKJXM-2022055); 四川自然资源厅科研项目(KJ-2023-31)[Research Project of Department of Natural Resources of Sichuan Province(KJ-2023-31); Science and Technology Innovation Project of Sichuan Bureau of Geology and Mineral resources(SCDKZCKJXM-2022055)]
作者简介(Biography): 宋国虎(1989-),男,硕士,高级工程师,研究方向:山地灾害防治。[SONG Guohu(1989-), male, M.Sc., senior engineer, research on mountain disaster prevention and control] E-mail:justdoitsgh@126.com
*通讯作者(Corresponding author): 杨桢贤(1983-),男,硕士,教授级高级工程师,研究方向:工程地质与灾害地质。[YANG Zhenxian(1983-), male, M.Sc., professor of engineer, research on engineering geology and disaster geology] E-mail: 279875692@qq.com
更新日期/Last Update: 2023-03-30