[1]李午阳,兰鑫灿,唐家乐,等.地表反照率和蒸散发对秦巴山地增温效应的影响[J].山地学报,2022,(4):614-625.[doi:10.16089/j.cnki.1008-2786.000697]
 LI Wuyang,LAN Xincan,TANG Jiale,et al.Influence of Albedo and Evapotranspiration on the Mass Elevation Effect in the Qinling-Daba Mountains of China[J].Mountain Research,2022,(4):614-625.[doi:10.16089/j.cnki.1008-2786.000697]
点击复制

地表反照率和蒸散发对秦巴山地增温效应的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第4期
页码:
614-625
栏目:
山地技术
出版日期:
2022-07-25

文章信息/Info

Title:
Influence of Albedo and Evapotranspiration on the Mass Elevation Effect in the Qinling-Daba Mountains of China
文章编号:
1008-2786-(2022)4-614-12
作者:
李午阳1兰鑫灿1唐家乐1赵 芳1 2*连沅媛1
1.河南大学 地理与环境学院,河南 开封 475004; 2.黄河中下游数字地理技术教育部重点实验室,河南 开封 475004
Author(s):
LI Wuyang1 LAN Xincan1 TANG Jiale1 ZHAO Fang1 2* LIAN Yuanyuan1
1. College of Geography and Environmental Science, Henan University, Kaifeng 475004, Henan, China; 2. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Kaifeng 475004, Henan, China
关键词:
山体增温效应 随机森林 地表温度 蒸散发 地表反照率 秦巴山地
Keywords:
mountain heating effect random forest land surface temperature evapotranspiration albedo the Qingling-Daba Mountains
分类号:
K909
DOI:
10.16089/j.cnki.1008-2786.000697
文献标志码:
A
摘要:
山体增温效应是山体内部温度高于山体外部的主要原因,山区地-气热量交换是山体增温效应形成的机制。本文聚焦于地-气热量交换过程的关键地表参数,以2008—2018年的MODIS数据为基础,计算地表反照率(Alb)、蒸散发(ET)、归一化植被指数(NDVI)和归一化水指数(NDWI)等数据,结合秦巴山地的同海拔地表温度数据(LST),使用随机森林算法,分析地表反照率(Alb)和蒸散发(ET)对秦巴山地和秦巴山地内四个典型区(伏牛山、太白山、神农架、迭山等及其周边)增温效应的影响。结果表明:(1)秦巴山地及内部典型区山体增温效应差异较大,这种增温效应与所选取的影响因素有很强的相关性,二者之间的R2均在0.62以上。(2)除伏牛山及周边区域外,Alb和山体增温效应的变化趋势呈现一致性,说明地表反照率越高,山体增温效应越大,其中太白山及周边区域Alb对山体增温效应的影响最大,其变量重要性(VI)值达到0.68。(3)除迭山及周边区域外,ET和山体增温效应呈现相反的变化趋势,说明ET的升高在一定程度上减弱了山体的增温效应,其中神农架及周边区域ET影响最大,其VI值达到0.88,在太白山及周边区域,ET影响仅次于Alb,VI值达到0.62。本研究使用同海拔LST数据作为山体增温效应的代用因子,并在秦巴山地及其内部尺度分析各因素对增温效应的影响程度及Alb和ET对山体增温效应的影响,突破了以往山体增温效应研究对宏观尺度(大陆尺度、全球尺度)山地垂直带界限分布和区域尺度温度站点设置依赖的局限,为山体增温效应研究由宏观向微观的机理研究提供参考。
Abstract:
Mass Elevation Effect(MEE)play a significant role in causing higher temperatures inside mountains than ones outside mountains and it was quantified and widely used to interpret the distribution of mountain altitudinal belt. Heat exchange between ground and air is considered as the mechanism of MEE. However it is still unclear which surface factors associated with heat exchange between ground and air should be responsible for MEE. This paper aims at exploring the variation of MEE and exploring the geographical mechanism based on the key surface parameters of the land-air heat exchange process in the Qingling-Daba Mountains of China. MODIS and DEM data were collected to extract land surface temperatures(LST)at same altitude as dependent variable; Albedo(Alb), evapotranspiration(ET), NDVI, NDWI and other factors were analyzed and used as independent variables in the Qingling-Daba Mountains and the typical areas(the Funiu Mountains, the Taibai Mountains, the Shennongjia Mountains, the Diego Mountain); Random forest method was used to analyze the influence of independent variables on dependent variables.
The results showed that:(1)There was a close correlation between LST at the same altitude and the selected influence factors with R2 being all above 0.66 in the typical areas to be selected.(2)The variation of Alb and MEE showed a consistency in the trends meaning a positive effect of the former on the latter except the Funiu Mountain. The greatest effect of Alb on MEE was found in the Taibai Mountain and its surrounding areas with VI value as high as 0.68.(3)In addition to the Diego Nountain, an opposite trend was found between the variation of ET and MEE in different areas, which means the higher the ET, the smaller the MEE. The greatest effect of ET on MEE was found in the Shennongjia Mountain and its surrounding areas, with VI value as high as 0.88. The effect of ET on MEE was second only to the effect of Alb in the Taibai Mountain and its surrounding areas. The innovation of this study is to use LST data at same altitude as a proxy factor for MEE and the influence of Alb and ET on MEE were explored in the Qinling-Daba Mountains and the interior typical areas. By this study, it broke through the dependence of the study of MEE on altitudinal belt at macro scale(continental scale and global scale)and the distribution of meteorological stations at regional scale, and it provides a possibility for the study of the mechanism of MEE from macro to micro.

参考文献/References:

[1] QUERVAIN A D. Die Hebung der atmosphärischen lsothermenin der Schweizer Alpen und ihre Beziehung zu deren Höhengrenzen [J]. Gerlands Beitr Geophys, 1904, 6:481-533.
[2] YAO Yonghui, ZHANG Baiping. The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines [J]. International Journal of Climatology, 2015, 35(8):1833-1846. DOI: 10.1002/joc.4123
[3] 姚永慧,张百平. 基于MODIS数据的青藏高原气温与增温效应估算[J]. 地理学报, 2013,68(1):95-107. [YAO Yonghui, ZHANG Baiping. MODIS-based estimation of air temperature and heating-up effect of the Tibetan Plateau [J]. Acta Geographica Sinica, 2013, 68(1): 95-107] DOI: 10.11821/xb201301011
[4] 刘俊杰, 潘自武, 秦奋, 等. 基于MODIS的秦巴山地气温估算与山体效应分析[J]. 地理研究, 2020,39(3):735-748. [LIU Junjie, PAN Ziwu, QIN Fen, et al. Estimation of air temperature based on MODIS and analysis of mass elevation effect in the Qinling-Daba Mountains [J]. Geographical Research, 2020, 39(3):735-748] DOI: 10.11821/dlyj020190164
[5] ZHANG Baiping, YAO Yonghui. Implications of mass elevation effect for the altitudinal patterns of global ecology [J]. Journal of Geographical Sciences, 2016, 26(7): 871-877. DOI: 10.1007/s11442-016-1303-2
[6] 姚永慧, 徐美, 张百平. 青藏高原增温效应对垂直带谱的影响[J]. 地理学报, 2015, 70(3):407-419. [YAO Yonghui, XU Mei, ZHANG Baiping. Implication of the heating effect of the Tibetan Plateau for mountain altitudinal belts [J]. Acta Geographica Sinica, 2015, 70(3):407-419] DOI: 10.11821/dlxb201503005
[7] 张百平, 姚永慧, 赵芳, 等. 山体效应研究[M]. 北京: 中国环境出版社, 2015. [ZHANG Baiping, YAO Yonghui, ZHAO Fang, et al. Study of mountain mass effect [M]. Beijing: China Environment Press, 2015]
[8] ZHAO Fang, ZHANG Baiping, ZHANG Shuo, et al. Contribution of mass elevation effect to the altitudinal distribution of global treelines [J]. Journal of Mountain Science, 2015, 12(2): 289-297. DOI: 10.1007/s11629-014-3223-x
[9] ZHAO Fang, ZHANG Baiping, PANG Yu, et al. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere [J]. Journal of Geographical Sciences, 2014, 24(2): 226-236. DOI: 10.1007/s11442-014-1084-4
[10] HAN Fang, YAO Yonghui, DAI Shibao, et al. Mass elevation effect and its forcing on timberline altitude [J]. Journal of Geographical Sciences, 2012, 22(4): 609-616. DOI: 10.1007/s11442-012-0950-1
[11] GRUBB J P. Interpretation of massenerhebung effect on tropical mountains [J]. Nature, 1971, 229: 44-45. DOI: 10.1038/229044a0
[12] BARRY R G. Mountain weather and climate [M]. New York: Cambridge University Press, 2008.
[13] LEUSCHNER C. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: Elevation, structure and floristics [J]. Vegetatio, 1996, 123(2): 193-206. DOI: 10.1007/BF00118271
[14] FLENLEY J. Ultraviolet insolation and the tropical rainforest: Altitudinal variations, quaternary and recent change, extinctions, and biodiversity [M]. Chichester: Praxis, 2007.
[15] 赵芳, 张百平, 庞宇, 等. 山体效应对北半球林线分布的影响分析[J]. 地理学报, 2012, 67(11):1556-1564. [ZHAO Fang, ZHANG Baiping, PANG Yu, et al. Mass elevation effect and its contribution to the altitude of timberline in the Northern Hemisphere [J]. Acta Geographica Sinica, 2012, 67(11): 1556-1564] DOI: 10.11821/xb201211012
[16] 韩芳, 张百平, 谭靖, 等. 山体基面高度对青藏高原及其周边地区雪线空间分布的影响[J]. 地理研究, 2014,33(1): 23-30. [HAN Fang, ZHANG Baiping, TAN Jing, et al. The effect of mountain basal elevation on the distribution of snowline with diffrernt mountain basal elevations in Tibetan Plateau and its surrounding areas [J]. Acta Geographica Sinica, 2014, 33(1): 23-30] DOI: 10.11821/dlyj201401003
[17] HE Wenhui, ZHANG Baiping, ZHAO Fang, et al. The mass elevation effect of the Central Andes and its implications for the Southern Hemisphere's highest treeline [J]. Mountain Research and Development, 2016, 36(2): 213-221. DOI: 10.165/MRD-JOURNAL-D-15-00027
[18] 王婧, 张百平, 张文杰, 等. 科罗拉多落基山脉山体效应定量化研究[J]. 地理研究, 2017,36(8):1467-1477. [WANG Jing, ZHANG Baiping, ZHANG Wenjie, et al. Quantitative research of mass elevation effect in Colorado Rocky Mountains [J]. Geographical Research, 2017, 36(8): 1467-1477] DOI: 10.11821/dlyj201708006
[19] 索南东主, 姚永慧, 张百平. 青藏高原和阿尔卑斯山山体效应的对比研究[J]. 地理研究, 2020,39(11):2568-2580. [SUO Nandongzhu, YAO Yonghui, ZHANG Baiping. Comparative study on the mountain elevation effect of the Tibetan Plateau and the Alps [J]. Geographical Research, 2020, 39(11): 2568-2580] DOI: 10.11821/dlyj020190755
[20] BARRY R G. Mountain weather and climate [M]. London and New York: Routledge, 1992.
[21] 翟丹平, 白红英, 冯海鹏, 等. 基于气象数据和遥感影像的太白山气温直减率[J]. 山地学报, 2016,34(4):496-503. [ZHAI Danping, BAI Hongying, FENG Haipeng, et al. Temperature lapse rates in the Taibai Mountain based on meteorological data and remote sensing image [J]. Mountain Research, 2016, 34(4): 496-503] DOI: 10.16089/j.cnki.1008-2786.000155
[22] TANG Zhiyao, FANG Jingyun. Temperature variation along the northern and southern slopes of Mt. Taibai, China [J]. Agricultural and Forest Meteorology, 2006, 139(3): 200-207. DOI: 10.1016/j.agrformet.2006.07.001
[23] 张朔, 姚永慧, 庞宇, 等. 山体基面高度的提取方法——以台湾岛为例[J]. 地球信息科学学报, 2012,14(5):562-568. [ZHANG Shuo, YAO Yonghui, PANG Yu, et al. Monutian basal elevation extraction in the Taiwan island [J]. Journal of Geo-information Science, 2012, 14(5): 562-568] DOI: 10.3724/SP.J.1047.2012.00562
[24] ZHANG Shuo, ZHANG Baiping, YAO Yonghui, et al. Magnitude and forming factors of mass elevation effect on Qinghai-Tibet Plateau [J]. Chinese Geographical Science, 2016, 26(6): 745-754. DOI: 10.1007/s11769-016-0834-x
[25] GE Jun, GUO Weidong, PITMAN A J, et al. The non-radiative effect dominates local surface temperature change caused by afforestation in China [J]. Journal of Climate, 2019, 32(14). DOI: 10.1175/JCLI-D-18-0772.1
[26] 孙菽芬. 陆面过程的物理、生化机理和参数化模型[M]. 北京:气象出版社, 2005. [SUN Shufen. Physical and biochemical mechanisms and parametric models of land surface processes [M]. Beijing: China Meteorological Press, 2005]
[27] SCHULTZ N M, LAWRENCE P J, LEE Xuhui. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(4): 903-917. DOI: 10.1002/2016JG003653
[28] OKI T, KANAE S. Global hydrological cycles and world water resources [J]. Science, 2006, 313(5790): 1068-1072. DOI: 10.1126/science.1128845
[29] RORISON I H, SUTTON F, HUNT R. Local climate, topography and plant growth in Lathkill Dale NNR. I. A twelve-year summary of solar radiation and temperature [J]. Plant, Cell and Environment, 1986, 9(1): 49-56. DOI: 10.1111/1365-3040.ep11612961
[30] 高江波, 焦珂伟, 吴绍洪. 1982-2013 年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019,74(3):534-543. [GAO Jiangbo, JIAO Kewei, WU Shaohong. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013 [J]. Acta Geographica Sinica, 2019, 74(3): 534-543] DOI: 10.11821/dlxb201903010
[31] 金会军, 孙立平, 王绍令, 等. 青藏高原中东部局地因素对地温的双重影响(Ⅰ):植被和雪盖 [J]. 冰川冻土, 2008, 30(4):535-545. [JIN Huijun, SUN Liping, WANG Shaoling, et al. Dual influences of local environmental variables on ground temperatures on the Interior-Eastern Qinghai-Tibet Plateau(Ⅰ): Vegetation and snow cover [J]. Journal of Glaciology and Geocryology, 2008, 30(4): 535-545]
[32] 杜习乐, 吕昌河, 王海荣. 土地利用/覆被变化(LUCC)的环境效应研究进展[J]. 土壤, 2011,43(3):350-360. [DU Xile, LYU Changhe, WANG Hairong. Review: Researches on environmental effects of land use/cover change [J]. Soils. 2011,43(3):350-360] DOI: 10.13758/j.cnki.tr.2011.03.009
[33] ESWAR R, SEKHAR M, BHATTACHARYA B K. Disaggregation of LST over India: Comparative analysis of different vegetation indices [J]. International Journal of Remote Sensing, 2016, 37(5):1035-1054. DOI: 10.1080/01431161.2016.1145363
[34] YEH T C, CHANG C C. A preliminary experimental simulation on heating effect of Tibetan Plateau on the general circulation over Eastern Asia in summer [J]. Scientia Sinica, 1974, 17(3): 397-420.
[35] CHEN Longxun, REITE E R, FENG Zhiqiang. The atmospheric heat source over the Tibetan Plateau: May-August 1979 [J]. Monthly Weather Review, 1985, 113(10): 1771-1790. DOI: 10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO; 2
[36] SHREVE F. Conditions indirectly affecting vertical distribution on desert mountains [J]. Ecology, 1922, 3(4): 269-274. DOI: 10.2307/1929428
[37] 傅抱璞. 山地气候[M]. 北京:科学出版社, 1983. [FU Baopu. Mountain climate [M]. Beijing: Science Press, 1983]
[38] 刘俊杰, 秦奋, 赵芳, 等. 秦巴山地山体基面高度的提取及分布[J]. 地球信息科学学报, 2018,20(10):1457-1466. [LIU Junjie, QIN Fen, ZHAO Fang, et al. Extraction and distribution of mountain base elevation in the Qinling-Daba Mountains [J]. Journal of Geo-information Science, 2018, 20(10): 1457-1466] DOI: 10.12082/dqxxkx.2018.180227
[39] VUKOVICH F M, TOLL D L, MURPHY R E. Surface temperature and albedo relationships in Senegal derived from NOAA-7 satellite data [J]. Remote Sensing of Environment, 1987, 22(3): 413-421. DOI: 10.1016/0034-4257(87)90092-7
[40] 杨金忠, 蔡树英. 土壤中水、汽、热运动的耦合模型和蒸发模拟[J]. 武汉水利电力学院学报, 1989,22(4):35-44. [YANG Jinzhong, CAI Shuying. A coupled model of water-vaper-heat transport in porous media and simulation analysis of evaporation [J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1989, 22(4): 35-44]
[41] LIANG Shunlin. Narrowband to broadband conversions of land surface albedo I Algorithms [J]. Remote Sensing of Environment, 2000, 76: 213-238. DOI: 10.1016/S0034-4257(00)00205-4
[42] XU Tongren, BATENI S M, MARGULIS S A, et al. Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system [J]. Journal of Hydrometeorology, 2016,17:2353-2370. DOI: 10.1175/JHM-D-15-0178.1
[43] BREIMAN L. Random forests-random features [J]. Machine Learning, 1999:1-29. DOI: 10.1023/A:1010933404324
[44] 宋述芳, 何入洋. 基于随机森林的重要性测度指标体系[J]. 国防科技大学学报, 2021,43(2):25-32. [SONG Shufang, HE Ruyang. Importance measure index system based on random forest [J]. Journal of National University of Defense Technology, 2021, 43(2): 25-32] DOI: 10.11887/j.cn.202102004
[45] 邢立亭, 李净, 焦文慧. 基于MODIS和随机森林的兰州市日最高气温和最低气温估算[J]. 干旱区研究, 2020,37(3):152-158. [XING Liting, LI Jing, JIAO Wenhui. Estimation of daily maximum and minimum temperature of Lanzhou city based on MODIS and random forest [J]. Arid Zone Research, 2020, 37(3): 152-158] DOI: 10.13866/j.azr.2020.03.17
[46] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018,30(1):78-86. [HUA Junwei, ZHU Shanyou, ZHANG Guixin. Downscaling land surface temperature based on random forest algorithm [J]. Remote Sensing for Land and Resources, 2018, 30(1): 78-86] DOI: 10.6046/gtzyyg.2018.01.11
[47] ZHAO Wei, DUAN Sibo, LI Ainong, et al. A practical method for reducing terrain effect on land surface temperature using random forest regression [J]. Remote Sensing of Environment, 2019, 221: 635-649. DOI: 10.1016/j.rse.2018.12.008
[48] MATTHEW W M. Bias of the random forest Out-of-Bag(OOB)error for certain input parameters [J]. Open Journal of Statistics, 2011, 1(3): 205-211. DOI: 10.4236/ojs.2011.13024
[49] ARCHER K J, KIMES R V. Empirical characterization of random forest variable importance measures [J]. Computational Statistics and Data Analysis, 2008, 52(4): 2249-2260. DOI: 10.1016/j.csda.2007.08.015
[50] NICODEMUS K K. Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures [J]. Briefings in Bioinformatics, 2011, 12(4): 369-373. DOI: 10.1093/bib/bbr016
[51] STROBL C, BOULESTEIX A L, ZEILEIS A, et al. Bias in random forest variable importance measures: Illustrations, sources and a solution [J]. BMC Bioinformatics, 2007, 8:25. DOI: 10.1186/1471-2105-8-25
[52] 于文凭, 马明国. MODIS地表温度产品的验证研究—以黑河流域为例[J]. 遥感技术与应用, 2011,26(6):705-712. [YU Wenping, MA Mingguo. Validation of the MODIS land surface temperature products-a case study of the Heihe River Basin [J]. Remote Sensing Technology and Application, 2011, 26(6): 705-712] DOI: 10.11873/j.issn.1004-0323.2011.6.705
[53] 韩芳, 张百平, 李西灿, 等. 青藏高原山体效应的遥感估算及其生态效应分析[J]. 山地学报, 2016,34(6):788-798. [HAN Fang, ZHANG Baiping, LI Xican, et al. MODIS-based estimation of mass elevation effect in the Tibetan Plateau and its ecological effect [J]. Mountain Research, 2016, 34(6): 788-798] DOI: 10.16089/j.cnki.1008-2786.000187
[54] HOLTMEIER F K. Mountain timberlines ecology, patchiness, and dynamics(2nd ed.)[M]. New York: Springer Verlag, 2009: 49-58.
[55] 王欢欢, 赵杰, 岳超, 等. 黄土高原植被恢复对地表的冷却作用及变化规律[J]. 水土保持学报, 2021,35(3):214-220. [WANG Huanhuan, ZHAO Jie, YUE Chao, et al. Colling effect induced by afforestation on the Loess Plateau and its change law [J]. Journal of Soil and Water Conservation, 2021, 35(3): 214-220] DOI: 10.13870/j.cnki.stbcxb.2021.03.030
[56] DICKINSON R E, KENNEDY P. Impacts on regional climate of Amazon deforestation [J]. Geophysical Research Letters, 1992,19(19):1947-1950. DOI: 10.1029/92GL01905

相似文献/References:

[1]沈思民,赵 军*,刘佳茹,等.祁连山TRMM降水数据降尺度不同方法比较研究[J].山地学报,2019,(6):923.[doi:10.16089/j.cnki.1008-2786.000482]
 SHEN Simin,ZHAO Jun*,LIU Jiaru,et al.Comparative Study on Different Downscaling Methods of TRMM Satellite Precipitation Data over the Qilian Mountains, China[J].Mountain Research,2019,(4):923.[doi:10.16089/j.cnki.1008-2786.000482]

备注/Memo

备注/Memo:
收稿日期(Received date):2021-11-11; 改回日期(Accepted date):2022-07-26
基金项目(Foundation item):国家自然科学基金(41601091)。[National Natural Science Foundation of China(41601091)]
作者简介(Biography):李午阳(1996-)男,河南商丘人,硕士,主要研究方向:山体效应。[LI Wuyang(1996-), male, born in Shangqiu, Henan province, M.Sc., research on mass elevation effect] E-mail: 104753190127@henu.edu.cn
*通讯作者(Corresponding author):赵芳(1984-),女, 博士, 讲师, 主要研究方向:山地地理、山地生态环境。[ZHAO Fang(1984-), female, Ph.D, associate professor, research on mountain geography and mountain ecology environment] E-mail: zhaofang84@163.com
更新日期/Last Update: 2022-08-30