[1]赵淑芬,曾润强*,张宗林,等.黄河上游潜在滑坡早期识别及影响因素[J].山地学报,2022,(2):249-264.[doi:10.16089/j.cnki.1008-2786.000669]
 ZHAO Shufen,ZENG Runqiang*,ZHANG Zonglin,et al.Early Identification and Influencing Factors of Potential Landslides in the Upper Reaches of the Yellow River, China[J].Mountain Research,2022,(2):249-264.[doi:10.16089/j.cnki.1008-2786.000669]
点击复制

黄河上游潜在滑坡早期识别及影响因素
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第2期
页码:
249-264
栏目:
山地灾害
出版日期:
2022-03-25

文章信息/Info

Title:
Early Identification and Influencing Factors of Potential Landslides in the Upper Reaches of the Yellow River, China
文章编号:
1008-2786-(2022)2-249-16
作者:
赵淑芬12曾润强12*张宗林12王 鸿12孟兴民12
1.兰州大学 地质科学与矿产资源学院,兰州 730000; 2. 甘肃省环境地质与灾害防治技术创新中心,兰州 730000
Author(s):
ZHAO Shufen12 ZENG Runqiang12* ZHANG Zonglin12 WANG Hong12 MENG Xingmin12
1. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China; 2. Technology & Innovation Centre for Environment Geology and Geohazards Prevention, Lanzhou 730000, China
关键词:
黄河上游 SBAS-InSAR技术 早期识别 席笈滩滑坡 锁子滑坡 变形阶段
Keywords:
upper reach of the Yellow River SBAS-InSAR technology early-identification Xijitan landslide Suozi Landslide deformation stage
分类号:
P642.22
DOI:
10.16089/j.cnki.1008-2786.000669
文献标志码:
C
摘要:
黄河上游特殊的地质地貌环境与区域气候,孕育了大型、特大型和巨型滑坡群,频发的地质灾害影响着黄河上游的经济发展和生态保护。InSAR技术可用于地质灾害早期识别、预防地质灾害发生和降低灾害损失,然而针对黄河上游区域的潜在滑坡早期识别及影响因素却鲜有开展。本研究基于2017年2月至2020年12月的SAR影像,运用SBAS-InSAR技术获取黄河上游(龙羊峡至刘家峡段)南北20 km范围内的地表形变速率,结合光学遥感影像和野外调查确定潜在滑坡。研究发现:(1)确定出的355处潜在滑坡,在空间分布上具有集群性,其中85处位于老滑坡上。同时,区内潜在滑坡主要集中于海拔1600~2200 m的河谷阶地和低山丘陵,分布在坡度10°~30°,坡向45°~180°,高差50~200 m的较软弱地层上,受NWW-NW向构造影响强烈。(2)对形变速率和面积较大且直接威胁村庄和道路的席笈滩滑坡和锁子滑坡变形特征的野外调查和原因的分析表明,这两个滑坡均为老滑坡局部复活,目前分别处于稳定蠕滑和波动蠕滑阶段。本研究结果具有较高的准确性和可靠性,可为该段潜在滑坡隐患排查和致灾空间分析提供数据参考,具有重要的科学意义与应用价值。
Abstract:
The special geological, geomorphological environment and regional climate, jointly contribute to the formation of large to giant landslide groups in the upper reaches of the Yellow River, which influence the region's economic development and ecological protection. InSAR technology can be used for early identification and prevention of geological hazards, helping to reduce the potential casualties and economic losses,but has not yet been applied in the upper reaches of the Yellow River. This study used SBAS-InSAR technology, optical remote sensing images and field surveys to define potential landslides along a 40 km section of the upper reaches of the Yellow River(Longyangxia to Liujiaxia). Specifically, we used SAR images from February 2017 to December 2020 to obtain surface deformation velocity. Results are as follows:(1)The 355 identified potential landslides were clustered in space, and include 85 sites located on old landslides. The potential landslides were mainly concentrated on river valley terraces and on low mountains and hills at an altitude of 1600 m to 2200 m. They were distributed on relatively weak stratum with slope of 10 ° to 30 °, aspect of 45 ° to 180 °, and height difference of 50 m to 200 m. The landslides were strongly affected by NWW-NW faults.(2)The deformation characteristics of the Xijitan Landslide and Suozi Landslide, which have undergone large deformation across a wide area and directly threaten villages and roads, show that both have developed from the local reactivation of old landslides. They were now in the stable creep and fluctuation creep stages, respectively. Our accurate and precise results, provide key data for potential landslide hazard investigation and assessment in this section, and are additionally of great scientific significance and application value.

参考文献/References:

[1] 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 第四纪研究,2003, 23(6):640-647. [HAUNG Runqiu. Mechanism of large scale landslides in western China [J]. Quaternary Sciences, 2003, 23(6):640-647] DOI: 10.3321/j.issn:1001-8166.2004.03.016
[2] 郭小花,卢玉东,李小林,等. 黄河上游德恒隆—锁子滑坡堵塞黄河事件[J]. 吉林大学学报(地球科学版),2015, 45(6): 1789-1797. [GUO Xiaohua, LU Yudong, LI Xiaolin, et al. Event of block up of Yellow River by Dehenglong-Suozi landslides [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6):1789-1797] DOI: 10.13278/j.cnki.jjuese.201506202
[3] 殷志强,秦小光,赵无忌,等. 黄河上游滑坡泥石流时空演化及触发机制[M]. 北京:科学出版社,2016:7-12. [YIN Zhiqiang, QIN Xiaoguang, ZHAO Wuji, et al. Temporal and spatial evolution and triggering mechanism of landslide and debris flow in the upper Yellow River [M]. Beijing: Science Press, 2016: 7-12]
[4] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007, 26(3):433-454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454] DOI: 10.3321/j.issn:1001-8166.2004.03.016
[5] 殷志强,魏刚,秦小光,等. 青藏高原东北缘黄河上游滑坡与堰塞湖研究进展[J]. 地学前缘,2021, 28(2):46-57. [YIN Zhiqiang, WEI Gang, QIN Xiaoguang, et al. Research progress of landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibtan Plateau [J]. Earth Science Frontiers, 2021, 28(2):46-57] DOI: 10.13745/j.esf.sf.2020.9.4
[6] 周琪,许强,周书,等. 基于数值模拟的突发型黄土滑坡运动过程研究——以黑方台陈家8#滑坡为例[J]. 山地学报,2019, 37(4):528-537. [ZHOU Qi, XU Qiang, ZHOU Shu, et al. Movement process of abrupt loess flowslide based on numerical simulation—a case study of Chenjia 8# on the Heifangtai terrace [J]. Mountain Research, 2019, 37(4): 528-537] DOI: 10.16089/j.cnki.1008-2786.000445
[7] 詹铮,李曰国,黎克武. 洒勒山滑坡分析[J]. 山地研究,1986, 4(2):145-152. [ZHAN Zheng, LI Yueguo, LI Kewu. Analysis on Salieshan landslide [J]. Mountain Research, 1986, 4(2): 145-152] DOI: 10.16089/j.cnki.1008-2786.1986.02.006
[8] DONG Guanghui, ZHANG Fanyu, MA Minmin, et al. Ancient landslide-dam events in the Jishi Gorge, upper Yellow River valley, China [J]. Quaternary Research, 2014, 81(3):445-451] DOI: 10.1016/j.yqres.2013.09.003
[9] 白俊光,吕生弟,韩建设. 李家峡水电站坝前水库滑坡蓄水前后稳定性预测[J]. 岩土力学,2008, 29(7):1723-1731. [BAI Junguang, LYU Shengdi, HAN Jianshe. Stability prediction of reservoir landslide of Lijiaxia Hydropoewr station before and after reservoir impounding [J]. Rock and Soil Mechanics, 2008, 29(7):1723-1731] DOI: 10.3969/j.issn.1000-7598.2008.07.001
[10] ZHANG Dexuan, WANG Gonghui, YANG Tinjun, et al. Satellite remote sensing-based detection of the deformation of a reservoir bank slope in Laxiwa Hydropower Station, China [J]. Landslides, 2013, 10(2):231-238. DOI: 10.1007/s10346-012-0378-9
[11] 罗银飞,许伟林,田浩,等. 黄河龙羊峡库区地质环境条件与滑坡灾害发育特征[J]. 工程地质学报, 2011, 19:75-79. [LUO Yinfei, XU Weilin, TIAN Hao, et al. Yellow River Longyang Xia storehouse district geology environmental condition and landslide disaster growth characteristic [J]. Journal of Engineering Geology, 2011, 19:75-79]
[12] 安炳琪,罗海滨,丁海勇,等. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用,2021, 36(4):838-846. [AN Bingqi, LUO Haibin, DING Haiyong, et al. Monitoring of surface deformation in Xining based on SBAS-InSAR [J]. Remote Sensing Technology and Application, 2021, 36(4):838-846] DOI: 10.11873/j.issn.1004-0323.2021.4.0838
[13] 廖明生,董杰,李梦华,等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报,2021, 25(1):332-341. [LIAO Mingsheng, DONG Jie, LI Menghua, et al. Radar remote sensing for potential landslides detection and deformation monitoring [J]. National Remote Sensing Bulletin, 2021, 25(1):332-341] DOI: 10.11834/jrs.20210162
[14] 李晓恩,周亮,苏奋振,等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报,2021, 25(2):614-629. [LI Xiaoen, ZHOU Liang, SU Fenzhen, et al. Application of InSAR technology in landslide hazard: Progress and prospects [J]. National Remote Sensing Bulletin, 2021, 25(2):614-629] DOI: 10.11834/jrs.20209297
[15] 范一大,吴玮,王薇,等. 中国灾害遥感研究进展[J]. 遥感学报,2016, 20(5):1170-1184. [FAN Yida, WU Wei, WANG Wei, et al. Research progress of disaster remote sensing in China [J]. National Remote Sensing Bulletin, 2016, 20(5):1170-1184] DOI: 10.11834/jrs.20166171
[16] 张路,廖明生,董杰,等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版),2018, 43(12):2039-2049. [ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry: A case study of Danba, Sichuan [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049] DOI: 10.13203/j.whugis20180181
[17] 郭华东,张露.雷达遥感六十年:四个阶段的发展[J]. 遥感学报,2019, 23(6):1023-1035. [GUO Huadong, ZHANG Lu. 60 years of radar remote sensing: Four-stage development [J]. National Remote Sensing Bulletin, 2019, 23(6):1023-1035] DOI: 10.11834/jrs.20199398
[18] 徐郡,胡晋山,康建荣,等. 基于SBAS-InSAR的矿区村庄地面沉降监测与分析[J]. 金属矿山,2019(10):74-80. [XU Jun, HU Jinshan, KANG Jianrong, et al. Monitoring and analysis of village surface subsidence in mining area based on SBAS-InSAR [J]. Metal Mine, 2019(10):74-80] DOI: 10.19614/j.cnki.jsks.201910012
[19] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps [J]. Journal of Geophysical Research, 1997, 102(B4):7547-7563. DOI: 10.1029/96JB03804
[20] SQUARZONI G, BAYER B, FRANCESCHINI S, et al. Pre_and post-failure dynamics of landslides in the northern Apennines revealed by space-borne synthetic aperture radar interferometry(InSAR)[J]. Geomorphology, 2020, 369:107353. DOI: 10.1016/j.geomorph.2020.107353
[21] BERARDUNO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferogram [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. DOI: 10.1109/TGRS.2002.803792
[22] SHI Xuguo, YANG Chao, ZHANG Lu, et al. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets [J]. Science of the Total Environment, 2019, 674:200-210. DOI: 10.1016/j.scitotenv.2019.04.140
[23] LIU Peng, LI Zhenhong, HOEY T, et al. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:253-264. DOI: 10.1016/j.jag.2011.10.010
[24] 苏晓军,张毅,贾俊,等. 基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究[J]. 山地学报,2021, 39(1):59-70. [SU Xiaojun, ZHANG Yi, JIA Jun, et al. InSAR—based monitoring and identification of potential landslides in Lueyang county, the southern Qinling Mountains, China [J]. Mountain Research, 2021, 39(1):59-70] DOI: 10.16089/j.cnki.1008-2786.000576
[25] ZHANG Zonglin, ZENG Runqiang, MENG Xingmin, et al. Effect of soluble salt loss via spring water on irrigation-induced landslide deformation [J]. Water, 2020, 12(10):2889. DOI: 10.3390/w12102889
[26] 殷志强, 秦小光,赵无忌,等. 基于多元遥感影像数据的黄河上游滑坡发育特征研究[J]. 工程地质学报,2013, 21(5):779-787. [YIN Zhiqiang, QIN Xiaoguang, ZHAO Wuji, et al. Characteristics of landslides in upper reaches of Yellow River with multiple date of remote sensing [J]. Journal of Engineering Geology, 2013, 21(5):779-787] DOI: 10.3969/j.issn.1004-9665.2013.05.01
[27] 史立群,魏刚,殷志强,等. 青海尖扎盆地寺门村滑坡发育特征及成因分析[J]. 中国地质灾害与防治学报,2020, 31(5):15-21. [SHI Liqun, WEI Gang, YIN Zhiqiang, et al. Characteristics and formation of Simencun landslide in Jianzha Basin of Qinghai province [J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5):15-21] DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.03
[28] 赵无忌,殷志强,马吉福,等. 黄河上游贵德盆地席芨滩巨型滑坡发育特征及地貌演化[J]. 地质论评,2016, 62(3):709-721. [ZHAO Wuji, YIN Zhiqiang, MA Jifu, et al. Multi-stage development characteristics and geomorphic evolution process of Xijitan super large landslide in the Guide Basin, upper reaches of Yellow River [J]. Geological Review,2016, 62(3):709-721] DOI: 10.16509/j.georeview.2016.03.013
[29] 赵瑞欣,周保,李滨. 黄河上游龙羊峡至积石峡段巨型滑坡OSL测年[J]. 地质通报,2013, 32(12):1943-1951. [ZHAO Ruixin, ZHOU Bao, LI Bin. The application of optical stimulate luminescence dating to the study of clustered landslides activity [J]. Geological Bulletin of China, 2013, 32(12):1943-1951] DOI: 10.3969/j.issn.1671-2552.2013.12.008
[30] 张志刚,白世彪,王建,等. 全新世早期黄河上游积石峡大型滑坡堵江事件研究[J]. 干旱区资源与环境,2013, 27(7):102-106. [ZHANG Zhigang, BAI Shibiao, WANG Jian, et al. The event of Jishixia of river block by sever landslide occurred at in the upper reaches of the Yellow River during the early Holocene [J]. Journal of Arid Land Resources and Environment, 2013, 27(7):102-106] DOI: 10.13448/j.cnki.jalre.2013.07.030
[31] 魏刚, 殷志强, 马吉福, 等. 黄河上游阿什贡滑坡群发育期次及演化过程分析[J]. 水文地质工程地质,2016, 43(6):133-140+153. [WEI Gang, YIN Zhiqiang, MA Jifu, et al. An analysis of forming stages and evolution process of the Ashigong landslide cluster in the upper reaches of the Yellow River [J]. Hydrogeology and Engineering Geology, 2016, 43(6):133-140+153] DOI: 10.16030/j.cnki.issn.1000-3665.2016.06.21
[32] 李珅熠. 黄河峡谷龙羊峡—拉西瓦段右岸坡稳定性研究[D]. 西安: 西安工业大学,2018: 1-82. [LI Shenyi. The research of stability of the right bank slope of the Longyangxia—Laxiwa section of the Yellow River gorge [D]. Xi'an: Xi'an Technological University, 2018: 1-82]
[33] 周保,胡贵寿,彭建兵,等. 基于GIS的黄河上游拉干峡—寺沟峡段滑坡危险性评价[J]. 南水北调与水利科技,2010, 8(1):36-38+48. [ZHOU Bao, HU Guishou, PENG Jianbing, et al. Landslide hazard assessment from La'gan Gorge to Sigou Gorge in the upper reaches of Yellow River based on GIS [J]. South-to-North Water Transfers and Water Science and Technology, 2010, 8(1):36-38+48] DOI: 10.3969/j.issn.1672-1683.2010.01.009
[34] 魏刚. 黄河上游龙羊峡至寺沟峡段巨型滑坡分布特征及风险评价研究[D]. 北京: 中国地质大学(北京),2013: 12-13 [WEI Gang. Study on the distribution characteristics and risk assessment of super large scale landslides from Longyang Gorge to Sigou Gorge in the upper reaches of Yellow River [D]. Beijing: China University of Geosciences, 2013: 12-13]
[35] 周保,彭建兵,殷跃平,等. 黄河上游拉干峡—寺沟峡段特大型滑坡及其成因研究[J]. 地质论评,2014, 60(1):138-144. [ZHOU Bao, PENG Jianbing, YIN Yueping, et al. Research on large-scale landslides between Lagan Gorge and Sigou Gorge in the upper reaches of Yellow River [J]. Geological Review, 2014, 60(1):138-144] DOI: 10.16509/j.georeview.2014.01.018
[36] 李小林,郭小花,李万花. 黄河上游龙羊峡—刘家峡河段巨型滑坡形成机理分析[J]. 工程地质学报,2011, 19(4):516-529. [LI Xiaolin, GUO Xiaohua, LI Wanhua. Mechanism of giant landslides from Longyangxia Valley to Liujiaxia Valley along upper Yellow River [J]. Journal of Engineering Geology, 2011, 19(4):516-529] DOI: 10.3969/j.issn.1004-9665.2011.04.013
[37] 殷志强,程国明,胡贵寿,等. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J]. 工程地质学报,2010, 18(1):41-51. [YIN Zhiqiang, CHENG Guoming, HU Guishou, et al. Preliminary study on characteristic and mechanism of super—large landslide in upper Yellow River since Late-Pleistocene [J]. Journal of Engineering Geology, 2010, 18(1):41-51] DOI: 10.3969/j.issn.1004-9665.2010.01.006
[38] 李媛茜,张毅,苏晓军,等. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报,2021, 25(2):677-690. [LI Yuanxi,ZHANG Yi,SU Xiaojun,et al. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique [J]. National Remote Sensing Bulletin, 2021, 25(2):677-690] DOI:10.11834/jrs.20210094
[39] 麻源源,陈云波,左小清, 等. Sentinel-1A数据及短基线集的昆明地面沉降分析[J]. 测绘科学,2019, 44(11):59-66+95. [MA Yuanyuan, CHEN Yunbo, ZUO Xiaoqing, et al. Analysis of land subsidenc in Kunming based on Sentinal-1A data and SBAS technology [J]. Science of Surveying and Mapping, 2019,44(11):59-66+95] DOI: 10.16251/j.cnki.1009-2307.2019.11.009
[40] LEE S, MIN K. Statistical analysis of landslide susceptibility at Yongin, Korea [J]. Environmental Geology, 2001, 40(9):1095-1113. DOI: 10.1007/s002540100310
[41] 孙晓慧. 快速隆升金沙江上游典型河段滑坡敏感性与风险性区划研究:以徐龙—奔子栏河段为例[D]. 吉林: 吉林大学,2020:90-93. [SUN Xiaohui. Study on landslide susceptibility and risk mapping along the rapidly uplifting section of the upper Jinsha River: A case of Xulong to Benzilan reach [D]. Jilin: Jilin University, 2020:90-93] DOI: 10.27162/d.cnki.gjlin.2020.001120
[42] 兰剑,陈晓利. 2008年MS 8.0汶川地震诱发滑坡灾害在映秀地区的演化特征[J]. 地震地质,2020, 42(1):125-146. [LAN Jian, CHEN Xiaoli. Evolution characteristics of landslides triggered by 2008 Ms 8.0 Wenchuan earthquake in Yingxiu area [J]. Seismology and Geology, 2020, 42(1):125-146] DOI: 10.3969/j.issn.0253-4967.2020.01.009
[43] 兰恒星, 伍法权, 周成虎, 等. 基于GIS的云南小江流域滑坡因子敏感性分析[J]. 岩石力学与工程学报, 2002, 21(10):1500-1506. [LAN Hengxing, WU Faquan, ZHOU Chenghu, et al. Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10):1500-1506] DOI: 10.3321/j.issn:1000-6915.2002.10.014
[44] 叶培龙,张强,王莺,等. 1980—2018年黄河上游气候变化特征及其对生态植被和径流量的影响[J]. 大气科学学报,2020, 43(6):967-969. [YE Peilong, ZHANG Qiang, WANG Ying, et al. Climate change in the upper Yellow River Basin and its impact on ecological vegetation and runoff from 1980 to 2018 [J]. Transactions of Atmospheric Sciences, 2020, 43(6):967-969] DOI: 10.13878/j.cnki.dqkxxb.20200924001
[45] 吴博,赵法锁,段钊,等. 基于熵权的属性识别模型在陕西土质滑坡危险度评价中的应用[J]. 灾害学,2018, 33(1):140-145. [WU Bo, ZHAO Fasuo, DUAN Zhao, et al. Application of attribute recognition model based on coefficient of entropy to hazard degree evaluation of soil landslide in Shaanxi [J]. Journal of Catastrophology, 2018, 33(1):140-145] DOI: 10.3969/j.issn.1000-811X.2018.01.025
[46] 张烜途. 岷江上游流域滑坡灾害发育特征及易发性评价[D]. 成都:西南交通大学,2020:41-42. [ZHANG Xuantu. Landslides characteristics and landslides susceptibility assessment in the upperstream catchment of Minjiang River [D]. Chengdu: Southwest Jiaotong University, 2020:41-42] DOI: 10.27414/d.cnki.gxnju.2020.001675
[47] VAN ASCH T W J, BUMA J, VAN BEEK L P H. A view on some hydrological triggering systems in landslides [J]. Geomorphology, 1999, 30(1):25-32. DOI: 10.1016/S0169-555X(99)00042-2
[48] 何玉花,张东水,李燕婷,等. 基于Google Earth影像的黄河上游干流地区滑坡特征分析[J]. 测绘与空间地理信息,2017, 40(7):91-94. [HE Yuhua, ZHANG Dongshui, LI Yanting, et al. Analysis of landslide characteristics in main stream area of the upper reaches of the Yellow River based on Google Earth image [J]. Geomatics and Spatial Information Technology, 2017, 40(7):91-94] DOI: 10.3969/j.issn.1672-5867.2017.07.029
[49] MA Peifeng, CUI Yifei, WANG Weixi, et al. Coupling InSAR and numerical modeling for characterizing landslide movements under complex loads in urbanized hillslopes [J]. Landslides, 2021, 18:1611-1623. DOI: 10.1007/s10346-020-01604-2
[50] 许强,黄润秋,李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展,2004, 19(3):478-483. [XU Qiang, HUANG Runqiu, LI Xiuzhen. Research progress in time forecast and prediction of landslides [J]. Advances in Earth Sciences, 2004, 19(3):478-483] DOI: 10.3321/j.issn:1001-8166.2004.03.021
[51] 陈贺,汤华,葛修润, 等. 基于深部位移的蠕滑型滑坡预警指标及预警预报研究[J]. 岩石力学与工程学报,2019, 38(S1):3015-3024. [CHEN He, TANG Hua, GE Xiurun, et al. Research on early warning of creep landslide by early-warning indictors based on deep displacements [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3015-3024] DOI: 10.13722/j.cnki.jrme.2018.1336
[52] 任开瑀,姚鑫, 赵小铭,等. 基于时序InSAR、GPS、影像偏移测量3种监测数据的滑坡失稳破坏预测研究[J]. 岩石力学与工程学报,2020, 39(S2):3421-3431. [REN Kaiyu, YAO Xin, ZHAO Xiaoming, et al. Study of landslide failure prediction based on TS-InSAR, GPS and image offset monitoring [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2):3421-3431] DOI: 10.13722/j.cnki.jrme.2019.1095

相似文献/References:

[1]曾永年,冯兆东,曹广超.基于GIS的黄河上游龙羊峡库区生态环境遥感监测研究[J].山地学报,2003,(02):140.

备注/Memo

备注/Memo:
收稿日期(Received date):2021-10-13; 改回日期(Accepted date): 2022-03-29
基金项目(Foundation item):国家重点研发计划项目(2018YFC1504704); 甘肃省技术创新中心建设项目(18JR2JA006); 中央高校基本科研业务费专项资金项目(lzujbky-2021-sp01)。[National Key R&D Program of China(2018YFC1504704); The Construction Project of Gansu Technological Innovation Center(18JR2JA006); The Fundamental Research Funds for the Central Universities(lzujbky-2021-sp01)]
作者简介(Biography):赵淑芬(1996-),女,甘肃庆阳人,博士研究生,主要研究方向:环境遥感与地质灾害监测。[ZHAO Shufen(1996-), female, born in Qingyang, Gansu province, Ph.D. candidate, research on environmental remote sensing, early identification of geological disasters] E-mail: zhaoshf21@lzu.edu.cn
*通讯作者(Corresponding author):曾润强(1987-),男,湖南邵阳人,讲师,主要研究方向:环境遥感与地质灾害监测。[ZENG Runqiang(1987-), male, born in Shaoyang, Hunan province, Ph.D., lecturer, research on environmental remote sensing and geological disaster monitoring] E-mail:zengrq@lzu.edu.cn
更新日期/Last Update: 2022-03-30