参考文献/References:
[1] 顾晓昀, 徐宗学, 刘麟菲, 等. 北京北运河河流生态系统健康评价[J]. 环境科学, 2018, 39(6): 2576-2587. [ GU Xiaoyun, XU Zongxue, LIU Linfei, et al. Health assessment of the stream ecosystem in the north Canal River Basin, Beijing, China [J]. Environment Science, 2018, 39(6): 2576-2587] DOI: 10.13227/j.hjkx.201706229
[2] 郝利霞, 孙然好, 陈利顶. 海河流域河流生态系统健康评价[J]. 环境科学, 2014, 35(10): 3692-3701. [HAO Lixia, SUN Ranhao, CHEN Liding. Health assessment of river ecosystem in Haihe River Basin, Beijing, China [J]. Environment Science, 2014, 35(10): 3692-3701] DOI: 10.13227/j.hjkx.2014.10.008
[3] 周夏飞, 曹国志, 於方, 等. 黄河流域水污染风险分区[J/OL]. 环境科学, 2021:08315. [ZHOU Xiafei, CAO Guozhi, YU Fang, et al. Risk zoning of water pollution in the Yellow River Basin [J/OL]. Environment Science, 2021:08315] DOI: 10.13227/j.hjkx.202108315
[4] 李雪迎, 杨曦, 乔琦, 等. 黄河流域甘肃段工业行业水污染物空间排放特征[J/OL]. 环境科学,2021:08253. [LI Xueying, YANG Xi, QIAO Qi, et al. Emission characteristics of industrial water pollutants in Gansu section of the Yellow River Basin [J/OL]. Environment Science, 2021:08253] DOI: 10.13227/j.hjkx.202108253
[5] 邬淑婷, 周之栋, 华建峰, 等. 浮水植物-底泥-微生物系统对富营养化水体氮的净化作用[J]. 生态与农村环境学报, 2021, 37(10):1341-1351. [WU Shuting, ZHOU Zhidong, HUA Jianfeng, et al. Study on the N purification of eutrophic water by floating plant-sediment-microbial system[J]. Journal of Ecology and Rural Environment, 2021, 37(10):1341-1351] DOI: 10.19741/j.issn.1673-4831.2021.0091
[6] LU Qingyu, XIN Wei, NIE Jiangli, et al. Present situation of eutrophication of landscape water body and its prevention and control measures [J]. Asian Agricultural Research, 2019, 11(3): 41-44. DOI: 10.19601/j.cnki.issn1943-9903.2019.3.008
[7] ZHAO Jianguo, LI Hongbo, LIU Cunqi, et al. Eutrophication evaluation of water body at Huailai section of the Yongding River [J]. Meteorological and Environmental Research, 2018, 9(6): 66-72+78. DOI: 10.19547/j.issn2152-3940.2018.06.013
[8] ZHANG Fakuo, SHAO Xiaolong, SUN Yichao, et al. Experimental research on the application of water hyacinths to the ecological restoration of water bodies with eutrophication [J]. Meteorological and Environmental Research, 2012, 3(11): 25-28.
[9] 李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015, 35(20): 6881-6890. [LI Yunshi, FENG Chongling, WU Xiaofu, et al. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils [J]. Acta Ecologica Sinica, 2015, 35(20): 6881-6890] DOI: 10.5846/stxb201405010868
[10] 李函珂, 杨远坤, 王彬, 等. 城市河流内源释放与微生物群落构效关系[J]. 环境科学与技术,2021, 44(3): 29-36. [LI Hanke, YANG Yuankun, WANG Bin, et al. Structure-activity relationship between microbial community and endogenous pollution in urban river [J]. Environmental Science and Technology, 2021, 44(3): 29-36] DOI: 10.19672/j.cnki.1003-6504.2021.03.005
[11] 蒋云霞, 黄廷林, 杨尚业,等. 水源水库贫营养好氧反硝化菌群脱氮特性研究[J]. 中国环境科学, 2020, 40(6):2493-2502. [JIANG Yunxia, HUANG Tinglin, YANG Shangye, et al. Study on the denitrifying characteristics of oligotrophicaerobic denitrifying bacteria flora from source water reservoir [J]. China Environment Science, 2020, 40(6): 2493-2502] DOI: 10.19674/j.cnki.issn1000-6923.2020.0280
[12] LIU Lianhua, OUYANG Wei, LIU Hongbin, et al. Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development [J]. Agriculture, Ecosystems and Environment, 2021, 308(3): 107238. DOI: 10.1016/j.agee.2020.107238
[13] 隋海潮. 重污染河流微生物群落结构及环境因子响应研究[D]. 哈尔滨: 哈尔滨师范大学, 2020:1-44. [SUI Haichao. Study on microbial structure of heavy polluted river and its responses to environmental factors [D]. Harbin: Harbin Normal University, 2020:1-44]
[14] 李洁, 孙寓姣, 尹萌, 等. 永定河山峡与城市段微生物群落结构季节变化[J]. 北京师范大学学报(自然科学版), 2020, 56(2): 257-264. [LI Jie, SUN Yujiao, YIN Meng, et al. Seasonal variations in microbial community structure in Yongding River [J]. Journal of Beijing Normal University(Natural Science), 2020, 56(2): 257-264] DOI: 10.12202/j.0476-0301.2020066
[15] 翁文林, 吕永鹏, 唐晋力, 等. 长江大保护城镇污水处理新模式新机制实践与探索[J]. 给水排水, 2021, 47(11): 48-53. [WENG Wenlin, LYU Yongpeng, TANG Jinli, et al. Exploration and practice on new models and mechanisms of urban wastewater treatment in the Yangtze River protection [J]. Water and Wastewater Engineering, 2021, 47(11): 48-53] DOI: 10.13789/j.cnki.wwe1964.2021.11.009
[16] 李天才, 赵晴云, 江瑞, 等. 紫色土塘泥微生物群落季节变化及其与环境因子的关系[J]. 西南农业学报, 2020, 33(9): 2082-2087. [LI Tiancai, ZHAO Qingyun, JIANG Rui, et al. Seasonal variations microbial community and their relationships with environmental factors in purple soil pond mud [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 2082-2087] DOI: 10.16213/j.cnki.scjas.2020.9.030
[17] 国家环保总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 1989:211-213. [Editorial committee of Determination methods for water and wastewater examination of State Environmental Protection Bureau. Determination methods for water and wastewater examination [M]. Beijing: China Environmental Science Press, 1989:211-213]
[18] 周石磊,孙悦, 岳哿丞, 等. 雄安新区-白洋淀冬季冰封期水体好氧反硝化菌群落空间分布特征及驱动因素[J]. 环境科学, 2020, 41(5): 2177-2187. [ZHOU Shilei, SUN Yue, YUE Gecheng, et al. Spatial distribution characteristics and driving factors of aerobic denitrification bacterial community structure from Baiyangdian Lake in Xiong’an new area during the winter freezing period [J]. Environment Science, 2020, 41(5): 2177-2187] DOI: 10.13227/j.hjkx.201910195
[19] ROBERTSON L A, GIJS KUENEN J. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium [J]. Journal of General Microbiology, 1983, 129(9): 2847-2855. DOI: 10.1099/00221287-129-9-2847
[20] FENG Biwei, LI Xiaoran, WANG Jinhui, et al. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea [J]. FEMS Microbiology Ecology, 2009, 70(2SI): 236-248. DOI: 10.1111/j.1574-6941.2009.00772.x
[21] LANGENHEDER S, LINDSTROM E S, TRANVIK L J. Structure and function of bacterial communities emerging from different sources under identical conditions [J]. Applied and Environmental Microbiology, 2006, 72(1): 212-220. DOI: 10.1128/AEM.72.1.212-220.2006
[22] 彭柯, 董志, 邸琰茗, 等. 基于16S rRNA高通量测序的北运河水体及沉积物微生物群落组成对比分析[J]. 环境科学, 2021, 42(11): 5424-5432. [PENG Ke, DONG Zhi, DI Yanming, et al. Contrasting analysis of microbial community composition in the water and sediments of the north Canal based on 16S rRNA high-throughput sequencing [J]. Environment Science, 2021, 42(11): 5424-5432] DOI: 10.13227/j.hjkx.202104122
[23] 张晓军. 乌梁素海富营养化不同程度湖区水体和沉积物微生物群落多样性及进化分析[D]. 呼和浩特: 内蒙古农业大学, 2011:1-42. [ZHANG Xiaojun. Diversity and phylogenetic analysis of microflora in water and sediments of different eutrophication sites in Lake Ulansuhai [D]. Huhhot: Inner Mongolia Agriculture University, 2011:1-42]
[24] 刘幸春, 王洪杰, 王亚利, 等. 府河水体及沉积物细菌群落结构分布特征及其影响因素[J]. 生态毒理学报, 2021, 16(5): 120-135. [LIU Xingchun, WANG Hongjie, WANG Yali, et al. Distribution characteristics and influencing factors of bacteria community structure in water and sediments of Fuhe River [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 120-135] DOI: 10.7524/AJE.1673-5897.20210107001
[25] 王彦雨, 夏远巧, 葛高飞. 铅胁迫对黄褐土微生物区系和功能多样性的影响[J]. 土壤通报, 2021, 52(5): 1114-1120. [WANG Yanyu, XIA Yuanqiao, GE Gaofei. Effect of lead stress on microbial flora and functional diversity in Yellow-cinnamon soil [J]. Chinese Journal of Soil Science, 2021, 52(5): 1114-1120] DOI: 10.19336/j.cnki.trtb.2021011102
[26] ABIA A L K, ALISOLTANI A, KESHRI J, et al. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, south Africa, as a function of land use [J]. Science of the Total Environment, 2018, 616-617: 326-334. DOI: 10.1016/j.scitotenv.2017.10.322
[27] 王鹏, 陈波, 张华. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 2017, 37(5): 1650-1658. [WANG Peng, CHEN Bo, ZHANG Hua. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland [J]. Acta Ecologica Sinica, 2017, 37(5): 1650-1658] DOI: 10. 5846/stxb201510052000
[28] 张慧珍, 常永凯, 陈泉睿, 等. 辽河口沉积物中古菌和细菌群落结构分析[J]. 海洋学报, 2018, 40(6): 113-130. [ZHANG Huizhen, CHANG Yongkai, CHEN Quanrui, et al. Community structure analysis of archaea and bacteria in sediments of Liaohe estuary [J]. Haiyang Xuebao, 2018, 40(6): 113-130] DOI: 10.3969/j.issn.0253-4193.2018.06.011
[29] 谭旭. 茅台地区赤水河水体微生物多样性分析[D]. 北京: 北京化工大学, 2014:1-111. [TAN Xu. Microbial diversity in freshwater of the Chishui River in Maotai town, China [D]. Beijing: Beijing University of Chemical Technology, 2014:1-111]
[30] 章豪, 冯鑫, 单捷,等. 聚磷生物膜反应器磷负荷提升过程中微生物种群分析[J]. 环境科学学报, 2019, 39(11): 3764-3771. [ZHANG Hao, FENG Xin, SHAN Jie, et al. Microbial community analysis in a phosphorus biofilm reactor during enhanced phosphorus loading [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3764-3771] DOI: 10.13671/j.hjkxxb.2019.0167
[31] KERSTERS K, DE VOS P, GILLIS M, et al. Introduction to the proteobacteria [J]. Prokaryotes, 2006(5): 3-37. DOI: 10.1007/0-387-30745-1-1
[32] 许小红. 城市水体中新型病原细菌生态学特征及其溯源研究[D]. 镇江: 江苏大学, 2008:1-132. [XU Xiaohong. Research on ecological characteristics and the retrieve of emerging pathogenic bacteria in urban water body [D]. Zhenjiang: Jiangsu University, 2008:1-132]
[33] 徐爱玲, 牛成洁, 宋志文, 等. 城市尾水排海过程中微生物及主要致病菌扩散规律[J]. 环境科学, 2018, 39(3): 1365-1378. [XU Ailing, NIU Chengjie, SONG Zhiwen, et al. Diffusion of microorganism and main pathogenic bacteria during municipal treated wastewater discharged into sea [J]. Environmental Science, 2018, 39(3): 1365-1378] DOI: 10.13227/j.hjkx.201705075
[34] 朱瑞芬, 刘杰淋, 王建丽, 等. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 2020, 53(13): 2637-2646. [ZHU Ruifen, LIU Jielin, WANG Jianli, et al. Molecuar ecological network analysis revealing the effects of nitrogen application on soil microbial community in the degraded grasslands [J]. Scientia Agricultura Sinica, 2020, 53(13): 2637-2646] DOI: 10.3864/j.issn.0578-1752.2020.13.012
[35] PEURA S, BERTILSSON S, JONES R I, et al. Resistant microbial cooccurrence patterns inferred by network topology [J]. Applied and Environmental Microbiology, 2015, 81(6): 2090-7. DOI: 10.1128/AEM.03660-14
[36] 周莉娜, 苏润华, 马思佳, 等. 基于PLFA法分析亚硝氮、硝氮和氨氮对厌氧微生物细菌群落的影响[J]. 环境科学学报, 2016, 36(2): 499-505. [ZHOU Lina, SU Runhua, MA Sijia, et al. Effects of nitrite, nitrate and ammonia nitrogen on anaerobic microbial community characterized by using phospholipid fatty acid PLFA method [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 499-505] DOI: 10.13671/j.hjkxxb.2015.0567
[37] 宋兆齐, 王莉, 刘秀花, 等. 云南和西藏四处热泉中的厚壁菌门多样性[J]. 生物技术, 2015, 25(5): 481-486+436. [SONG Zhaoqi, WANG Li, LIU Xiuhua, et al. Diversities of firmicutes in four hot springs in Yunnan and Tibet [J]. Biotechnology, 2015, 25(5): 481-486+436] DOI: 10.16519/j.cnki.1004-311x.2015.05.0095
[38] ZHANG Xiaoying, HU B X, REN Hejun, et al. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences[J]. Science of the Total Environment, 2018, 633: 518-528. DOI: 10.1016/j.scitotenv.2018.03.158
[39] 孙巍. 东江微生物的群落结构及其在氨氮转化中的作用特点[D]. 广州: 华南理工大学, 2009:1-206. [SUN Wei. The microbial communities along the Dongjiang River and their functions in Ammonia-Nitrogen transformation [D]. Guangzhou: South China University of Technology, 2009:1-206]
[40] 于洋. 北运河水体中氨氮的氧化过程及微生物响应特征[D]. 北京: 首都师范大学, 2012:1-90. [YU Yang. Oxidation process and microbial response characteristics of ammonia nitrogen in north Canal water [D]. Beijing: Capital Normal University, 2012:1-90]
[41] 李泽西, 刘文耀, 陈林, 等. 哀牢山山顶苔藓矮林林冠腐殖土的养分含量和微生物生物量特征[J]. 山地学报, 2011, 29(1): 26-32. [LI Zexi, LIU Wenyao, CHEN Lin, et al. Physical and chemical properties and microbial biomass of canopy soil in the montane cloud forest in Ailao Mountains [J]. Mountain Research, 2011, 29(1): 26-32] DOI: 10.16089/j.cnki.1008-2786.2011.01.002
[42] 张萍, 郭辉军, 刀志灵, 等. 高黎贡山不同土地类型土壤中微生物的生化活性[J]. 山地学报,2000, 18(5): 457-461. [ZHANG Ping, GUO Huijun, DAO Zhiling, et al. The microbial biochemical activities in soils of different land types in Gaoligong Mountains [J]. Mountain Research. 2000, 18(5): 457-461] DOI: 10.16089/j.cnki.1008-2786.2000.05.020
[43] 张丹, 徐建忠, 兰凌, 等. 紫色土表层和亚表层微生物数量比较[J]. 山地学报, 2001, 19(2):172-174. [ZHANG Dan, XU Jianzhong, LAN Ling, et al. Contrast research of microbe quantity between surface and subsurface purple soil [J]. Mountain Research, 2001, 19(2): 172-174] DOI: 10. 16089/j.cnki.1008-2786.2001.02.016
[44] STOCKDALE E A, SHEPHERD M A, FORTUNE S, et al. Soil fertility in organic farming systems-fundamentally different? [J]. Soil Use and Management, 2002, 18(S1): 301-308. DOI: 10.1079/SUM2002143
[45] 侯雪燕. 土壤pH对硝化作用和氨氧化微生物群落结构的影响[D]. 重庆: 西南大学, 2014:1-53. [HOU Xueyan. Effects of soil pH on nitrification and community structure of ammonia-oxidizing microorganisms [D]. Chongqing: Southwest University, 2014:1-53]
[46] 鲍林林, 陈永娟, 王晓燕. 北运河沉积物中氨氧化微生物的群落特征[J]. 中国环境科学, 2015, 35(1): 179-189. [BAO Linlin, CHEN Yongjuan, WANG Xiaoyan. Diversity and abundance of ammonia-oxidizing prokaryotes in surface sediments in Beiyun River [J]. China Environment Science, 2015, 35(1): 179-189]
[47] TATTI E, GOYER C, CHANTIGNY M, et al. Influences of over winter conditions on denitrification and nitrous oxide-producing microorganism abundance and structure in an agricultural soil amended with different nitrogen sources [J]. Agriculture, Ecosystems and Environment, 2014, 183: 47-59. DOI: 10.1016/j.agee.2013.10.021
[48] 张紫薇, 陈召莹, 张甜娜, 等. 岗南水库沉积物好氧反硝化菌群落时空分布特征[J]. 环境科学, 2022, 43(1):314-328. [ZHANG Ziwei, CHEN Zhaoying, ZHANG Tianna, et al. Spatial and temporal distribution of aerobic denitrification bacteria community in sediments of Gangnan reservoir [J]. Environmental Science. 2022, 43(1):314-328] DOI: 10.13227/j.hjkx.202104196
[49] 王佩琦, 周伟丽, 何圣兵, 等. 磷对混养反硝化污泥活性和微生物群落结构的影响[J]. 环境科学, 2018, 39(3): 1350-1356. [WANG Peiqi, ZHOU Weili, HE Shengbing, et al. Effects of phosphorus on the activity and bacterial community in mixotrophic denitrification sludge [J]. Environmental Science, 2018, 39(3): 1350-1356] DOI: 10.13227/j.hjkx.201706265
[50] 何浩然. 渭河干流和秦岭北麓典型支流浮游及沉积微生物群落结构与分子生态网络研究[D]. 西安: 西安理工大学, 2020:1-65. [HE Haoran. Study on planktonic and sedimentary microbial community structure and molecular ecological network in the Weihe River mainstem and its typical tributaries from the northern foot of the Qinling Mountains [D]. Xi’an: Xi’an University of Technology, 2020:1-65]