参考文献/References:
[1] 杜子银. 冻融作用对高寒草地土壤理化和生物学性质的影响[J]. 生态环境学报, 2020, 29(5): 1054-1061. [DU Ziyin. Effects of freeze-thaw action on soil physicochemical and biological properties in the alpine grasslands [J]. Ecology and Environmental Sciences, 2020, 29(5): 1054-1061] DOI: 10.16258/j.cnki.1674-5906.2020.05.023
[2] 范继辉, 鲁旭阳, 王小丹. 藏北高寒草地土壤冻融循环过程及水热分布特征[J]. 山地学报, 2014, 32(4): 385-392. [FAN Jihui, LU Xuyang, WANG Xiaodan. The freezing-thawing processes and soil moisture-energy distribution in permafrost active layer,northern Tibet [J]. Mountain Research, 2014, 32(4): 385-392] DOI: 10.16089/j.cnki.1008-2786.2014.04.012
[3] 魏卫东, 刘育红, 马辉, 等. 退化高寒草原浅层土壤冻融作用特征分析[J]. 西北农业学报, 2018, 27(9): 1358-1366. [WEI Weidong, LIU Yuhong, MA Hui, et al. Analysis of freeze-thaw action characteristics in shallow layer soil of degraded alpine steppe [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(9): 1358-1366] DOI:10.7606/j.issn.1004-1389.2018.09.017
[4] 高敏, 李艳霞, 张雪莲, 等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望 [J]. 农业环境科学学报, 2016, 35(12): 2269-2274. [GAO Min, LI Yanxia, ZHANG Xuelian et al. Influence of freeze-thaw process on soil physical, chemical and biological properties: A review [J]. Journal of Agro-Environment Science, 2016, 35(12): 2269-2274] DOI: 10.11654/jaes.2016-1087
[5] 韩炳宏, 周秉荣, 吴让, 等. 青海南部高寒草地土壤冻融交替期水热特征分析[J]. 气象科技, 2018, 46(2): 361-368. [HAN Binghong, ZHOU Bingrong, WU Rang, et al. Characteristics of hydrothermal factors in soil freezing and thawing alternation over southern alpine grasslands in Qinghai province [J]. Meteorological Science and Technology, 2018, 46(2): 361-368] DOI: 10.19517/j.1671-6345.20170231
[6] 李晓宁. 川西北高寒区冻融交替作用下土壤水—热运移研究[D]. 绵阳:西南科技大学, 2018:1-109. [LI Xiaoning. Study on movement mechanisms of water and heat under freeze-thaw cycles in northwest Sichuan Plateau [D]. Mianyang: Southwest University of Science and Technology, 2018:1-109]
[7] 牛浩, 罗万清, 王晋峰, 等. 冻融对东北黑土风干团聚体与水稳性团聚体组成及稳定性的影响[J]. 土壤通报, 2020, 51(4): 841-847. [NIU Hao, LUO Wanqing, WANG Jinfeng, et al. Effects of freeze-thaw on the composition and stability of air-dried and water-stable aggregates of black soil in northeast China [J]. Chinese Journal of Soil Science, 2020, 51(4): 841-847] DOI: 10.19336/j.cnki.trtb.2020.04.11
[8] 金万鹏, 范昊明, 刘博, 等. 冻融交替对黑土团聚体稳定性的影响[J]. 应用生态学报, 2019, 30(12): 4195-4201. [JIN Wanpeng, FAN Haoming, LIU Bo, et al. Effects of freeze-thaw cycles on aggregate stability of black soil [J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4195-4201] DOI: 10.13287/j.1001-9332.201912.025
[9] 徐俏, 崔东, 王兴磊, 等. 冻融对伊犁草地土壤水稳性大团聚体的影响[J]. 干旱地区农业研究, 2017, 35(6): 244-251. [XU Qiao, CUI Dong, WANG Xinglei, et al. Effects of freezing and thawing on soil water stable aggregates in Yili grassland [J]. Agricultural Research in the Arid Areas, 2017, 35(6): 244-251] DOI: 10.7606/j.issn.1000-7601.2017.06.35
[10] WANG Genxu, WANG Yibo, LI Yuanshou, et al. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China [J]. Catena, 2007, 70(3): 506-514. DOI: 10.1016/j.catena.2007.01.001
[11] 杜子银, 蔡延江, 王小丹, 等. 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展[J]. 生态学报, 2019, 39(13): 4627-4637. [DU Ziyin, CAI Yanjiang, WANG Xiaodan, et al. Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients [J]. Acta Ecologica Sinica, 2019, 39(13): 4627-4637] DOI: 10.5846/stxb201806211368
[12] HAYNES R J, WILLIAMS P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem [M]//SPARKS D L. Advances in Agronomy. New York: Academic Press. 1993: 119-199.
[13] STIEHL-BRAUN P A, HARTMANN A A, KANDELER E, et al. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils [J]. Global Change Biology, 2011, 17(8): 2629-2639. DOI: 10.1111/j.1365-2486.2011.02410.x
[14] 杜子银, 蔡延江, 王小丹, 等. 牦牛和藏绵羊粪便降解过程中的养分动态变化[J]. 山地学报, 2014, 32(4): 423-430. [DU Ziyin, CAI Yanjiang, WANG Xiaodan, et al. Temporal variation of yak and Tibetan sheep dung nutrients from an alpine steppe in northern Tibet, China [J]. Mountain Research, 2014, 32(4): 423-430] DOI: 10.16089/j.cnki.1008-2786.2014.04.015
[15] DURING C, WEEDA W C, DOROFAEFF F D. Some effects of cattle dung on soil properties, pasture production, and nutrient uptake [J]. New Zealand Journal of Agricultural Research, 1973, 16(3): 431-438. DOI: 10.1080/00288233.1973.10421126
[16] 戎郁萍, 韩建国, 王培, 等. 放牧强度对草地土壤理化性质的影响[J]. 中国草地, 2001, 23(4): 42-48. [RONG Yuping, HAN Jianguo, WANG Pei, et al. The effects of grazing intensity on soil physics and chemical properties [J]. Grassland of China, 2001, 23(4): 42-48]
[17] 孙翼飞, 沈菊培, 张翠景, 等. 不同放牧强度下土壤氨氧化和反硝化微生物的变化特征[J]. 生态学报, 2018, 38(8): 2874-2883. [SUN Yifei, SHEN Jupei, ZHANG Cuijing, et al. Responses of soil ammonia oxidizers and denitrifiers to different grazing intensities [J]. Acta Ecologica Sinica, 2018, 38(8): 2874-2883] DOI: 10.5846/stxb201704270772
[18] 李传松, 张亦婷, 赵兴敏, 等. 冻融及有机物料添加对黑钙土有机、无机碳的影响[J]. 江苏农业科学, 2019, 47(10): 272-277. [LI Chuansong, ZHANG Yiting, ZHAO Xingmin, et al. Effect of freeze-thaw and addition of organic materials on organic and inorganic carbon of chernozem [J]. Jiangsu Agricultural Sciences, 2019, 47(10): 272-277] DOI: 10.15889/j.issn.1002-1302.2019.10.060
[19] 郭晓丽, 何朋, 戴闪闪, 等. 冻融循环条件下水分和氮添加对黑土有机碳矿化的影响 [J]. 土壤与作物, 2020, 9(2): 141-149. [GUO Xiaoli, HE Peng, DAI Shanshan, et al. Effects of water and nitrogen additions on soil organic carbon mineralization in Mollisols under freezing-thawing cycles [J]. Soils and Crops, 2020, 9(2):141-149] DOI: 10.11689/j.issn.2095-2961.2020.02.005
[20] 徐欢, 王芳芳, 李婷, 等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报, 2020, 40(10): 3168-3182. [XU Huan, WANG Fangfang, LI Ting, et al. A review of freezing-thawing cycle effects on key processes of soil nitrogen cycling and the underlying mechanisms [J]. Acta Ecologica Sinica, 2020, 40(10): 3168-3182] DOI: 10.5846/stxb201903310619
[21] 陈兴财, 张丰松, 童心, 等. 畜禽粪便冻融作用后磷形态分布及其释放特征[J]. 环境科学学报, 2019, 39(5): 1617-1625. [CHEN Xingcai, ZHANG Fengsong, TONG Xin, et al. Form distribution of Phosphorus and its release after freeze-thaw process of animal manure [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1617-1625] DOI: 10.13671/j.hjkxxb.2018.0470
[22] CAI Yanjiang, WANG Xiaodan, DING Weixin, et al. Potential short-term effects of yak and Tibetan sheep dung on greenhouse gas emissions in two alpine grassland soils under laboratory conditions [J]. Biology and Fertility of Soils, 2013, 49(8): 1215-1226. DOI: 10.1007/s00374-013-0821-7
[23] 蔡延江, 杜子银, 王小丹, 等. 牲畜排泄物返还对藏北高寒草原土壤CH4排放的影响 [J]. 山地学报, 2014, 32(4): 393-400. [CAI Yanjiang, DU Ziyin, WANG Xiaodan, et al. Effects of excretal returns on CH4 emissions from an alpine steppe soil in northern Tibet, China [J]. Mountain Research, 2014, 32(4): 393-400] DOI: 10.16089/j.cnki.1008-2786.2014.04.006
[24] MA Xiuzhi, WANG Shiping, WANG Yanfen, et al. Short-term effects of sheep excrement on carbon dioxide, nitrous oxide and methane fluxes in typical grassland of Inner Mongolia [J]. New Zealand Journal of Agricultural Research, 2006, 49(3): 285-297. DOI: 10.1080/00288233.2006.9513719
[25] LIN Xingwu, WANG Shiping, MA Xiuzhi, et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods [J]. Soil Biology and Biochemistry, 2009, 41(4): 718-725. DOI: 10.1016/j.soilbio.2009.01.007
[26] DIAZ D A R, SAWYER J E, MALLARINO A P. Poultry manure supply of potentially available nitrogen with soil incubation [J]. Agronomy Journal, 2008, 100(5): 1310-1317. DOI: 10.2134/agronj2007.0371
[27] DU Ziyin, WANG Xiaodan, XIANG Jian, et al. Yak dung pat fragmentation affects its carbon and nitrogen leaching in northern Tibet, China [J]. Agriculture, Ecosystems and Environment, 2021, 310: 107301. DOI: 10.1016/j.agee.2021.107301
[28] CARTER M R, GREGORICH E G. Soil sampling and methods of analysis [M](2nd Edition). Boca Raton: Lewis Publishers, 1993:1-1208.
[29] O’HALLORAN I P, CADE-MENUN B J. Total and organic phosphorus [M]. CARTER M R, GREGORICH E G. Soil sampling and methods of analysis. Boca Raton: Lewis Publishers, 2006: 265-292.
[30] CAMBARDELLA C A, ELLIOTT E T.Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils [J].Soil Science Society of America Journal, 1994, 58(1): 123-130. DOI: 10.2136/sssaj1994.03615995005800010017x
[31] 魏丽红. 冻融作用对土壤理化及生物学性质的影响综述[J]. 安徽农业科学, 2009, 37(11): 5054-5057. [WEI Lihong. Review on the effects of freezing and thawing on the physiochemical and biological properties of soil [J]. Journal of Anhui Agricultural Sciences, 2009, 37(11): 5054-5057] DOI: 10.13989/j.cnki.0517-6611.2009.11.054
[32] 王洋, 刘景双, 王国平, 等. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学, 2007, 23(2): 91-96. [WANG Yang, LIU Jingshuang, WANG Guoping, et al. Study on the effect of freezing and thawing action to soil physical and chemical characteristics [J]. Geography and Geo-Information Science, 2007, 23(2): 91-96]
[33] OZTAS T, FAYETORBAY F. Effect of freezing and thawing processes on soil aggregate stability [J]. Catena, 2003, 52(1): 1-8. DOI: 10.1016/S0341-8162(02)00177-7
[34] 王连峰, 蔡延江, 解宏图. 冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系[J]. 应用生态学报, 2007, 18(10): 2361-2366. [WANG Lianfeng, CAI Yanjiang, XIE Hongtu. Relationships of soil physical and microbial properties with nitrous oxide emission under effects of freezing-thawing cycles [J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2361-2366] DOI: 10.13287/j.1001-9332.2007.0393
[35] 王永琦, 苏小四, 吕航, 等. 冻融作用对土壤水分迁移和地下水位波动影响的实验研究[J]. 北京师范大学学报(自然科学版), 2020, 56(2): 204-209. [WANG Yongqi, SU Xiaosi, LYU Hang, et al. Freeze-thaw effect on soil water migration and groundwater level fluctuation [J]. Journal of Beijing Normal University(Natural Science), 2020, 56(2): 204-209] DOI: 10.12202/j.0476-0301.2020059
[36] LEHRSCH G A, SOJKA R E, CARTER D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter [J]. Soil Science Society of America Journal, 1991, 55(5): 1401-1406. DOI: 10.2136/sssaj1991.03615995005500050033x
[37] 蔡延江, 王小丹, 丁维新, 等. 冻融对土壤氮素转化和N2O排放的影响研究进展[J]. 土壤学报, 2013, 50(5): 1032-1042. [CAI Yanjiang, WANG Xiaodan, DING Weixin, et al. Effects of freeze-thaw on soil nitrogen transformation and N2O emission: A review [J]. Acta Pedologica Sinica, 2013, 50(5): 1032-1042] DOI: 10.11766/trxb201301130028
[38] 王丽芹, 齐玉春, 董云社, 等. 冻融作用对陆地生态系统氮循环关键过程的影响效应及其机制[J]. 应用生态学报, 2015, 26(11): 3532-3544. [WANG Liqin, QI Yuchun, DONG Yunshe, et al. Effects and mechanism of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem [J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3532-3544] DOI: 10.13287/j.1001-9332.20150812.011
[39] 徐俊俊, 吴彦, 张新全, 等. 冻融交替对高寒草甸土壤微生物量氮和有机氮组分的影响[J]. 应用与环境生物学报, 2011, 17(1): 57-62. [XU Junjun, WU Yan, ZHANG Xinquan, et al. Effects of freezing and thawing cycles on microbial biomass nitrogen and organic nitrogen in alpine meadow soil [J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(1): 57-62] DOI: 10.3724/SP.J.1145.2011.00057
[40] BROOKS P D, WILLIAMS M W, SCHMIDT S K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt [J]. Biogeochemistry, 1998, 43(1): 1-15. DOI: 10.1023/A:1005947511910
[41] GROGAN P, MICHELSEN A, AMBUS P, et al. Freeze–thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms [J]. Soil Biology and Biochemistry, 2004, 36(4): 641-654. DOI: 10.1016/j.soilbio.2003.12.007
[42] KOPONEN H T, JAAKKOLA T, KEINANEN-TOIVOLA M M, et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles [J]. Soil Biology and Biochemistry, 2006, 38(7): 1861-1871. DOI: 10.1016/j.soilbio.2005.12.010
[43] JOSEPH G, HENRY H A L. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field [J]. Soil Biology and Biochemistry, 2008, 40(7): 1947-1953. DOI: 10.1016/j.soilbio.2008.04.007
[44] VAN BOCHOVE E, PREVOST D, PELLETIER F. Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil [J]. Soil Science Society of America Journal, 2000, 64(5): 1638-1643. DOI: 10.2136/sssaj2000.6451638x
[45] CHRISTENSEN S, CHRISTENSEN B T. Organic matter available for denitrification in different soil fractions: Effect of freeze/thaw cycles and straw disposal [J]. Journal of Soil Science, 1991, 42(4): 637-647. DOI: 10.1111/j.1365-2389.1991.tb00110.x
[46] 吴金凤, 刘鞠善, 李梓萌, 等. 草地土壤磷循环及其对全球变化的响应[J]. 中国草地学报, 2021, 43(6): 102-111. [WU Jinfeng, LIU Jushan, LI Zimeng, et al. Grassland soil phosphorus cycle and its response to global change [J]. Chinese Journal of Grassland, 2021, 43(6): 102-111] DOI: 10.16742/j.zgcdxb.20200326
[47] YEVDOKIMOV I, LARIONOVA A, BLAGODATSKAYA E. Microbial immobilisation of phosphorus in soils exposed to drying-rewetting and freeze-thawing cycles [J]. Biology and Fertility of Soils, 2016, 52(5): 685-696. DOI: 10.1007/s00374-016-1112-x
[48] FREPPAZ M, WILLIAMS B L, EDWARDS A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability [J]. Applied Soil Ecology, 2007, 35(1): 247-255. DOI: 10.1016/j.apsoil.2006.03.012
[49] LIU J, ULEN B, BERGKVIST G, et al. Freezing–thawing effects on phosphorus leaching from catch crops [J]. Nutrient Cycling in Agroecosystems, 2014, 99(1): 17-30. DOI: 10.1007/s10705-014-9615-z
[50] 胡钰, 香宝, 刘玉萍, 等. 交替冻融对东北地区典型土壤氮磷浓度的影响[J]. 环境工程技术学报, 2012, 2(4): 333-338. [HU Yu, XIANG Bao, LIU Yuping, et al. Freeze-thaw cycle effects on nitrogen and phosphorus content in typical soils of northeast China [J]. Journal of Environmental Engineering Technology, 2012, 2(4): 333-338] DOI: 10.3969/j.issn.1674-991X.2012.04.052