[1]王 翔a,陈 果ab*,戴晓爱a,等.藏西南典型危险性冰湖监测与泥石流溃决模拟[J].山地学报,2021,(5):687-700.[doi:10.16089/j.cnki.1008-2786.000630)]
 WANG Xianga,CHEN Guoab*,DAI Xiaoaia,et al.Typical Monitoring of Dangerous Glacial Lakes in Southwestern Tibet,China and Simulation of GLOF Debris Flow[J].Mountain Research,2021,(5):687-700.[doi:10.16089/j.cnki.1008-2786.000630)]
点击复制

藏西南典型危险性冰湖监测与泥石流溃决模拟()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第5期
页码:
687-700
栏目:
山地灾害
出版日期:
2021-09-25

文章信息/Info

Title:
Typical Monitoring of Dangerous Glacial Lakes in Southwestern Tibet,China and Simulation of GLOF Debris Flow
文章编号:
1008-2786-(2021)5-687-14
作者:
王 翔1a陈 果1a1b*戴晓爱1a陈永俊2张诗琪1a
1. 成都理工大学 a.地球科学学院; b.生态环境学院,成都 610059; 2.中南大学 资源与安全工程学院,长沙 410083
Author(s):
WANG Xiang1a CHEN Guo1a1b* DAI Xiaoai1a CHEN Yongjun2 ZHANG Shiqi1a
1. a. College of Earth Sciences; b. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; 2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
关键词:
藏西南 冰湖溃决 遥感监测 数值模拟
Keywords:
Southwestern Tibet GLOF remote sensing monitoring numerical simulation
分类号:
P954
DOI:
10.16089/j.cnki.1008-2786.000630)
文献标志码:
A
摘要:
藏西南地区位于喜马拉雅山脉中段,是我国冰湖溃决泥石流频发的重灾区之一。冰湖溃决泥石流数值模拟有助于认识灾害机理和评估灾害风险。冰湖溃决研究大多关注溃决洪水,针对青藏高原冰湖溃决泥石流的仿真模拟较少。本文基于1976—2018年Landsat系列遥感影像、野外调查和FLO-2D水文动力学模型等数据与方法,对藏西南地区典型冰湖强宗克措和吉莱普措开展动态变化分析、地貌调查和溃决泥石流模拟。结果表明:(1)气候变暖使得冰川不断退缩,致使典型冰湖规模持续扩张,强宗克措与吉莱普措的规模在近40 a分别增长了0.61 km2和0.26 km2;(2)触发冰湖溃决的地貌环境充分发育,冰湖发生溃决的潜在可能性增大,其中强宗克措尤为明显。因此,需进一步加强对强宗克措等典型冰湖的监测、预防和溃决灾害的治理;(3)FLO-2D模型可有效模拟复杂的冰湖溃决泥石流,有助于评估冰湖溃决灾害对下游的影响,模拟结果可作为制定下游地区灾害防治措施的依据。
Abstract:
Southwest Tibet is one of the hardest hit areas in the middle of the Himalayas of China haunted by debris flows relevant to glacial lake outburst flood(GLOF). Most of the studies on GLOF were merely concerned with flood themselves, but few attentions were paid to the simulations on debris flow mobilization caused by GLOF in the Qinghai-Tibet Plateau, China. It is quite believed that numerical simulation is an appropriate approach to interpretation of the mechanism of GLOF-related debris flow and assess their risks. In this study, it addressed typical glacial lakes, Qiangzongkeco and Gelhaipuco in southwest Tibet as case study. Investigation on dynamic change of glacial lake, simulation of GLOF-related debris flow was organized by field survey, analysis of Landsat series remote sensing images from 1976 to 2018 and FLO-2D hydrodynamic modelling. The results are those:(1)Climate warming caused glaciers to retreat continuously, resulting in the continuous expansion of typical glacial lake. The scales of Qiangzongkeco and Gelhaipuco in past 40 years had increased by 0.61 km2 and 0.26 km2, respectively;(2)Southwest Tibet is a fully developed periglacial goe-environment favorable to glacial lake outburst. The potential to GLOF had been increasing, especially at Qiangzongkeco and Gelhaipuco. The retreat area of the parent glaciers at Qiangzongkeco and Gelhaipuco reached about 1 km2, and the average annual retreat rate reached 17% at Gelhaipuco and 13% at Qiangzongkeco, respectively. Therefore, it is necessary to further strengthen the monitoring, prevention, and management of outburst disasters in typical glacial lakes such as Qiangzongkeco;(3)FLO-2D model could properly simulate the complicated GLOF-related debris flow, to evaluate the impacts of GLOF-related disasters on the downstream. According to our simulation, GLOF-relate debris flow at Gelhaipuco had the maximum flow velocity in the channel was about 14.1 m/s, with an average flow velocity 2.8 m/s and inundation depth 11.6 m. The whole inundation area was 4.9 km2. Our research achievements can be used as the basis for formulating disaster prevention measures in the downstream area.

参考文献/References:

[1] GOVINDHA RAJ K B. Remote sensing based hazard assessment of glacial lakes: A case study in Zanskar basin, Jammu and Kashmir, India [J]. Geomatics, Natural Hazards and Risk, 2010, 1(4): 339-347. DOI: 10.1080/19475705.2010.532973
[2] KOMORI J. Recent expansions of glacial lakes in the Bhutan Himalayas [J]. Quaternary International, 2008, 184: 177-186. DOI: 10.1016/j.quaint.2007.09.012
[3] BENN D I, BOLCH T, HANDS K, et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards [J]. Earth-Science Reviews, 2012, 114(1-2): 156-174. DOI: 10.1016/j.earscirev.2012.03.008
[4] 施雅风, 黄茂桓, 姚檀栋, 等. 中国冰川与环境—现在、过去和未来[M] 北京:科学出版社,2000: 236-243.[ SHI Yafeng, HUANG Maoheng, YAO Tandong, et al. China's glaciers and environment: Present, past, and future[M]. Beijing: Science Press, 2000:236-243]
[5] GARDELLE J, ARNAUD Y, BERTHIER E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009 [J]. Global and Planetary Change, 2011,75(1-2): 47-55. DOI: 10.1016/j.gloplacha.2010.10.003
[6] LIU J J, CHENG Z L, SU P C. The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China [J]. Quaternary International, 2014, 321:78-87. DOI: 10.1016/j.quaint.2013.11.023
[7] 朱颖彦, 李朝月, 杨志全, 等. 中巴喀喇昆仑公路冰湖溃决灾害[J]. 山地学报, 2021,39(4): 524-538. [ZHU Yingyan, LI Chaoyue, YANG Zhiquan, et al. Glacier Lake Outburst Flood(GLOF)along China-Pakistan International Karakoram Highway(KKH)[J]. Mountain Research, 2021,39(4): 524-538] DOI: 10.16089/j.cnki.1008-2786.000617
[8] WANG W, GAO Y, ANACONA P I, et al. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas [J]. Geomorphology, 2018, 306: 292-305. DOI: 10.1016/j.geomorph.2015.08.013
[9] HUGGEL C, KAAB A, HAEBERLI W, et al. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in Swiss Alps [J]. Canadian Geotechnical Journal, 2002, 39(2):316-330. DOI: 10.1139/t01-099
[10] WORNI R, HUGGEL C, CLAGUE J, et al. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective [J]. Geomorphology, 2014, 224: 161-176. DOI: 10.1016/j.geomorph.2014.06.031
[11] 王世金, 汪宙峰. 冰湖溃决灾害综合风险评估与管控[M]. 北京: 中国社会科学出版社, 2017:25-43. [WANG Shijin, WANG Zhoufeng. Comprehensive risk assessment and management of glacial lake outburst disasters [M]. Beijing: China Social Sciences Press, 2017:25-43]
[12] 王翔. 藏西南地区冰碛湖灾害遥感监测评价与模拟分析[D]. 成都: 成都理工大学,2020:67-71. [WANG Xiang. Remote sensing monitoring evaluation and simulation analysis of Glacier Lake Outburst Flood in southwest Tibet [D]. Chengdu: Chengdu University of Technology, 2020:67-71]
[13] BAJRACHARYA B, SHRESTHA A B, RAIBHANDARI L. Glacial Lake Outburst Floods in the Sagarmatha region [J]. Mountain Research and Development, 2007, 27(4): 336-344. DOI: 10.1659/mrd.0783
[14] 舒有锋. 西藏喜马拉雅山地区冰碛湖溃决危险性评价及其演进数值模拟[D]. 吉林: 吉林大学, 2011:109-124. [SHU Youfeng. Hazard assessment of moraine-dammed lake outburst in the Himalayas, Tibet and the propagating numerical simulation [D]. Jilin: Jilin University, 2011:109-124]
[15] WORNI R, STOFFEL M, HUGGEL C, et al. Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes(Argentina)[J]. Journal of Hydrology, 2012(444-445):134-145. DOI: 10.1016/j.jhydrol.2012.04.013
[16] PETRAKOV D A, TUTUBALINA O V, ALEINIKOV A A, et al. Monitoring of Bashkara glacier lakes(Central Caucasus, Russia)and modelling of their potential outburst [J]. Natural Hazards, 2012, 61(3): 1293-1316. DOI: 10.1007/s11069-011-9983-5
[17] 邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展,2018,33(7):687-701. [DENG Wei, ZHAO Wei, LIU Bintao, et al. Water security and the countermeasures in South Asia based on the “Belt and Road” Initiative [J]. Advances in Earth Science, 2018, 33(7): 687-701] DOI: 10.11867/j.issn.1001-8166.2018.07.0687
[18] 姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报,2014,29(8): 1377-1390. [YAO Xiaojun, LIU Shiyin, SUN Meiping, et al. Study on the Glacial Lake Outburst Flood events in Tibet since the 20th century [J]. Journal of Natural Resources, 2014,29(8): 1377-1390] DOI: 10.11849/zrzyxb.2014.08.010
[19] 崔鹏, 马东涛, 陈宁生, 等. 冰湖溃决泥石流的形成、演化与减灾对策[J]. 第四纪研究, 2003,23(6):621-628. [CUI Peng, MA Dongtao, CHEN Ningsheng, et al. The initiation, motion and mitigation of debris flow caused by glacial lake outburst [J]. Quaternary Sciences, 2003,23(6): 621-628] DOI: 10.3321/j.issn:1001-7410.2003.06.005
[20] 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002,21(11):701-707. [PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units in the Qinghai-Tibet Plateau and adjacent regions [J]. Geological Bulletin of China, 2002, 21(11): 701-707] DOI: 10.3969/j.issn.1671-2552.2002.11.002
[21] 潘桂棠, 丁俊, 王立全, 等. 青藏高原区域地质调查重要新进展[J]. 地质通报,2002,21(11): 787-793. [PAN Guitang, DING Jun, WANG Liquan, et al. Important new progress in regional geological survey of the Qinghai-Tibet Plateau [J]. Geological Bulletin of China, 2002, 21(11):787-793] DOI: 10.3969/j.issn.1671-2552.2002.11.018
[22] 杨续超, 张镱锂, 张玮, 等. 珠穆朗玛峰地区近34年来气候变化[J]. 地理学报, 2006, 61(7): 687-696. [YANG Xuchao, ZHANG Yili, ZHANG Wei, et al. Climate change in Mt. Qomolangma region in China during the last 34 years [J]. Acta Geographica Sinica, 2006, 61(7): 687-696] DOI: 10.3321/j.issn:0375-5444.2006.07.002
[23] 周天财, 孙建, 于欢. 1980—2013年青藏高原气候时空变化特征研究[J]. 成都信息工程大学学报, 2017, 32(5): 524-531. [ZHOU Tiancai, SUN Jian, YU Huan. Spatial and temporal patterns of climate in the Tibetan Plateau(1980-2013)[J]. Journal of Chengdu University of Information Technology, 2017, 32(5): 524-531] DOI: 10.16836/j.cnki.jcuit.2017.05.010
[24] CHEN X Q, CUI P, LI Y, et al. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang(Tibet)[J]. Geomorphology, 2007, 88(3-4): 298-311. DOI: 10.1016/j.geomorph.2006.11.012
[25] 王欣, 刘时银, 姚晓军, 等. 我国喜马拉雅山区冰湖遥感调查与编目[J]. 地理学报, 2010, 65(1): 29-36. [WANG Xin, LIU Shiyin, YAO Xiaojun, et al. Glacier lake investigation and inventory in the Chinese Himalayas based on the remote sensing data [J]. Acta Geographica Sinica, 2010, 65(1): 29-36] DOI: 10.11821/xb201001004
[26] HANSHAW M N, BOOKHAGEN B. Glacial areas, lake areas, and snowlines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru [J]. The Cryosphere Discuss, 2013, 7(2): 573-634. DOI: 10.5194/tcd-7-573-2013
[27] 杨成德, 王欣, 魏俊峰, 等. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556. [YANG Chengde, WANG Xin, WEI Junfeng, et al. Chinese glacial lake inventory based on 3S technology method [J]. Acta Geographica Sinica, 2019, 74(3): 544-556] DOI: 10.11821/dlxb201903011
[28] 刘娟, 姚晓军, 高永鹏, 等. 帕隆藏布流域冰湖变化及危险性评估[J]. 湖泊科学, 2019, 31(4): 1132-1143. [LIU Juan, YAO Xiaojun, GAO Yongpeng, et al. Glacial lake variation and hazard assessment of glacial lakes outburst in the Parlung Zangbo River Basin [J]. Journal of Lake Sciences, 2019, 31(4): 1132-1143] DOI: 10. 18307 /2019. 0420
[29] O'BRIEN J S, JULIEN P Y. Physical properties and mechanics of hyper concentrated sediment flows [R]. Logan: Delineation of Landslide, Flash Floods and Debris Flow Hazards in Utah, 1985:260-279.
[30] O'BRIEN J S, JULIEN P Y, FULLERTON W T. Two-dimensional water flood and mudflow simulation [J]. Journal of Hydraulic Engineering, 1993, 119(2): 244-261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)
[31] LIN M L, WANG K L, HUANG J J. Debris flow run off simulation and verification? case study of Chen-You-Lan watershed, Taiwan [J]. Natural Hazards and Earth System Sciences, 2005, 5(3): 439-445. DOI: 10.5194/nhess-5-439-2005
[32] WU Y H, LIU K F, CHEN Y C. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study [J]. Journal of Mountain Science, 2012, 10(2): 293-304. DOI: 10.1007/s11629-013-2511-1
[33] WANG W C, YANG X X, YAO T D. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet [J]. Hydrological Processes, 2012,26(2): 213-225. DOI: 10.1002/hyp.8127
[34] 朱海波. 冰碛湖泥石流灾害:危险性评价与数值模拟[D]. 长春:吉林大学, 2016:85-99. [ZHU Haibo. Moraine lake debris flow disaster: Risk evaluation and numerical simulation [D]. Changchun: Jilin University, 2016:85-99]
[35] 戎丹雅. 西藏典型冰湖溃坝洪水演进模拟[D]. 杭州: 浙江大学, 2016:59-61. [RONG Danya. Typical glacial lake outburst flood evolution simulation in Tibet [D]. Hangzhou: Zhejiang University, 2016:59-61]
[36] WESTOBY M J, GLASSER N F, BRASINGTON J, et al. Modelling outburst floods from moraine-dammed glacial lakes [J]. Earth-Science Reviews, 2014, 134: 137-159. DOI: 10.1016/j.earscirev.2014.03.009
[37] FROEHLICH D C. Peak outflow from breached embankment dam [J]. Journal of Water Resources Planning and Management, 1995, 121(1): 90-97. DOI: 10.1061/(ASCE)0733-9496(1996)122:4(317)
[38] 常鸣. 基于遥感及数值模拟的强震区泥石流定量风险评价研究[D]. 成都: 成都理工大学, 2014:44-58. [CHANG Ming. Quantitative risk assessment of debris flow in coseismic area based on remote sensing and numerical simulation [D]. Chengdu: Chengdu University of Technology, 2014:44-58]
[39] 徐道明, 冯清华. 西藏喜马拉雅山区危险冰湖及其溃决特征[J]. 地理学报,1989,44(3): 343-351+385-352. [XU Daoming, FENG Qinghua. Dangerous glacial lake and outburst features in Xizang Himalayas [J]. Acta Geographica Sinica,1989, 44(3): 343-351+385-352] DOI: 10.11821/xb198903010
[40] NIE Y, SHENG Y W, LIU Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015 [J]. Remote Sensing of Environment, 2017, 189: 1-13. DOI: 10.1016/j.rse.2016.11.008
[41] NIE Y, LIU Q, WANG J D, et al. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis [J]. Geomorphology, 2018, 308: 91-106. DOI: 10.1016/j.geomorph.2018.02.002
[42] 宫鹏, 姚晓军, 孙美平, 等. 1967—2014年科西河流域冰湖时空变化[J]. 生态学报, 2017, 37(24):8422-8432. [GONG Peng, YAO Xiaojun, SUN Meiping, et al. Spatial-temporal variations of glacial lakes in the Koshi River basin from 1967 to 2014 [J]. Acta Ecologica Sinica, 2017, 37(24): 8422-8432] DOI: 10.5846/stxb201611012223
[43] 柴开国. 珠峰地区冰湖变化及其影响研究[D]. 湘潭: 湖南科技大学, 2017:5-6. [CHAI Kaiguo. The change of glacial lake and its influence in the Everest region [D]. Xiangtan: Hunan University of Science and Technology, 2017:5-6]
[44] ALLEN S K, ZHANG G Q, WANG W C, et al. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach [J]. Science Bulletin, 2019, 64(7): 435-445. DOI: 10.1016/j.scib.2019.03.011
[45] STOFFEL M, WYZGA B, MARSTON R A. Floods in mountain environments: A synthesis [J]. Geomorphology, 2016, 272: 1-9. DOI: 10.1016/j.geomorph.2016.07.008
[46] GURUNG D R, KHANAL N R, BAJRACHARYA S R, et al. Lemthang Tsho Glacial Lake Outburst Flood(GLOF)in Bhutan: Cause and impact [J]. Geoenvironmental Disasters, 2017(1): 56-64. DOI: 10.1186/s40677-017-0080-2
[47] 艾洪舟. 地震涌浪机理及冰碛堰塞湖溃决风险研究[D]. 成都: 西南交通大学, 2017:1-10. [AI Hongzhou. Study of seismic surge mechanism and glacier lake outburst risk [D]. Chengdu: Southwest Jiaotong University, 2017:1-10]
[48] 姚晓军, 刘时银, 魏俊锋. 喜马拉雅山北坡冰碛湖库容计算及变化—以龙巴萨巴湖为例[J]. 地理学报, 2010, 65(11):1381-1390. [YAO Xiaojun, LIU Shiyin, WEI Junfeng. Reservoir capacity calculation and variation of moraine-dammed lakes in the north Himalayas: A case study of Longbasaba Lake [J]. Acta Geographica Sinica, 2010, 65(11): 1381-1390] DOI: 10.11821/xb201011008
[49] 王欣, 刘时银, 莫宏伟, 等. 我国喜马拉雅山区冰湖扩张特征及其气候意义[J]. 地理学报, 2011,66(7): 895-904. [WANG Xin, LIU Shiyin, MO Hongwei, et al. Expansion of glacial lakes and its implication for climate changes in the Chinese Himalaya [J]. Acta Geographica Sinica, 2011,66(7): 895-904] DOI: 10.11821/xb201107003
[50] 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报,2000, 45(1): 98-106. [YAO Tandong, LIU Xiaodong, WANG Ninglian. The issue of the extent of climate change in the Qinghai-Tibet Plateau [J]. Chinese Science Bulletin, 2000, 45(1): 98-106] DOI: 10.3321/j.issn:0023-074X.2000.01.021
[51] 段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381. [DUAN Anmin, XIAO Zhixiang, WU Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014 [J]. Climate Change Research, 2016, 12(5): 374-381] DOI: 10.12006/j.issn.1673-1719.2016.039
[52] 冀琴. 1990—2015年喜马拉雅山冰川变化及其对气候波动的响应[D]. 兰州: 兰州大学, 2018:54-56. [JI Qin. Glacier variations in response to climate change in the Himalaya during 1990-2015 [D]. Lanzhou: Lanzhou University, 2018:54-56]
[53] VLIMEK V, ZAPATA M L, KLIMES J, et al. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru [J]. Landslides, 2005, 2: 107-115. DOI: 10.1007/s10346-005-0052-6
[54] NIE Y, LIU W, LIU Q, et al. Reconstructing the Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya: Evolution, process and impacts [J], Geomorphology, 2020, 370: 107393. DOI: 10.1016/j.geomorph.2020.107393
[55] TINGSANCHALI T, CHINNARASRI C. Numerical model of dam failure due to flow overtopping [J]. Hydrological Sciences Journal, 2001,46(1): 113-130. DOI: 10.1080/02626660109492804

相似文献/References:

[1]朱颖彦,李朝月,杨志全*,等.中巴喀喇昆仑公路冰湖溃决灾害[J].山地学报,2021,(4):524.[doi:10.16089/j.cnki.1008-2786.000617]
 ZHU Yingyan,LI Chaoyue,YANG Zhiquan*,et al.Glacier Lake Outburst Flood(GLOF)along China-Pakistan International Karakoram Highway(KKH)[J].Mountain Research,2021,(5):524.[doi:10.16089/j.cnki.1008-2786.000617]

备注/Memo

备注/Memo:
收稿日期(Received date):2020-11-15; 改回日期(Accepted date): 2021-10-16
基金项目(Foundation item):成都理工大学“珠峰科学研究计划”(80000-2020ZF11410); 青藏高原及其东缘人文地理研究中心开放基金(RWDL2021-ZD003)[“Everest Scientific Research Project” of Chengdu University of Technology(80000-2020ZF11410); Open Fund of Human Geography Research Center of Qinghai-Tibet Plateau and its Eastern Rim(RWDL2021-ZD003)]
作者简介(Biography):王翔(1994-),男,安徽池州人,博士研究生,主要研究方向:遥感与冰冻圈灾害。[WANG Xiang(1994-), male, Ph.D. candidate, research on cryosphere remote sensing and disaster] E-mail: wangxiang@stu.cdut.edu.cn
*通讯作者(Corresponding author):陈果(1986-),男,博士,副教授,主要研究方向:生态环境变化。[CHEN Guo(1986-), male, Ph.D., associate professor, research on ecological environment change] E-mail:chenguo17@cdut.edu.cn
更新日期/Last Update: 2021-09-30