[1]魏良帅,郭蕾蕾,黄安邦,等.西南缺水区地下水水量、水质空间分异特征及成因分析——以乌蒙山片区金沙江干流绥江—屏山段为例[J].山地学报,2021,(5):658-671.[doi:10.16089/j.cnki.1008-2786.000628)]
 WEI Liangshuai,GUO Leilei,HUANG Anbang,et al.Spatial Differentiation of Groundwater Storage, Quality and Their Genesis in Water-Deficient Areas of Southwest China:A Case Study of the Suijiang-Pingshan Section of the Jinshajinag River in the Wumengshan Mountain Contiguous Zone, China[J].Mountain Research,2021,(5):658-671.[doi:10.16089/j.cnki.1008-2786.000628)]
点击复制

西南缺水区地下水水量、水质空间分异特征及成因分析——以乌蒙山片区金沙江干流绥江—屏山段为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第5期
页码:
658-671
栏目:
山地环境
出版日期:
2021-09-25

文章信息/Info

Title:
Spatial Differentiation of Groundwater Storage, Quality and Their Genesis in Water-Deficient Areas of Southwest China:A Case Study of the Suijiang-Pingshan Section of the Jinshajinag River in the Wumengshan Mountain Contiguous Zone, China
文章编号:
1008-2786-(2021)5-658-14
作者:
魏良帅1郭蕾蕾2黄安邦1舒勤峰1
1.中国地质科学院探矿工艺研究所,成都 611734; 2.四川水利职业技术学院 资源环境工程系,成都 611231
Author(s):
WEI Liangshuai1 GUO Leilei2 HUANG Anbang1 SHU Qinfeng1
1. Institute of Prospecting Technology, Chinese Academy of Geological Sciences, Chengdu 611734, China; 2. Department of Resources and Environmental Engineering, Sichuan Water Conservancy College, Chengdu 611231,China
关键词:
乌蒙山 地下水分布 水化学特征 水质现状 开发利用
Keywords:
The Wumeng Mountain groundwater distribution hydrochemical characteristic groundwater quality development and utilization
分类号:
P641.69
DOI:
10.16089/j.cnki.1008-2786.000628)
文献标志码:
A
摘要:
乌蒙山区地下水资源匮乏且时空分布不均,居民长久以来面临取用水难题。目前该区对于地下水富集规律及成因的研究较为成熟,但是没有与地下水水质评价结果及超标指标成因分析有效结合在一起,缺乏综合分析与实践检验。本研究以金沙江干流绥江—屏山段为研究区,基于地下水资源量统计分析、地下水质量评价结果,利用数理统计、Piper三线图、Gibbs图等分析区域地下水缺水类型、水化学演化规律及空间分布特征,并结合土样、岩样、水样各指标的相关性分析及土壤EF计算,分析区域地下水超标因子来源。研究表明:(1)碎屑岩区地下水分布分散、流量小、数量多,为资源型缺水区; 碳酸盐岩区地下水分布集中、流量大、数量小,为工程型缺水。(2)区内水—岩作用整体偏弱,以低矿化度的HCO3型地下水为主,占81.57%,分布于山地地区,接收大气降雨补给后就近排泄; HCO3·SO4型、SO4型地下水分别占17.69%、0.74%,分布于河谷两侧、金沙江两岸。(3)地下水各组分大多为I、II类水,NO3-源于农业、生活污水,为主要超标因子,其次为Al、Fe,因地层中背景值较高。(4)建议区域地下水开发利用方式为地表水直接引用、碎屑岩区分散引用、岩溶泉集中引水、民井抽提、钻孔探采。本研究为乌蒙山连片贫困缺水区服务群众饮水安全和地下水资源合理利用提供理论依据。
Abstract:
The Wumengshan Mountain Contiguous Zone, China suffers from deficiency of groundwater resources. The uneven spatial and temporal distribution of groundwater storage causes long faced problem of local water access. It is necessary to analyze the spatial characteristics of groundwater volume and hydrochemistry, to clarify genetic mechanism and evaluate groundwater quantity and quality in Wumengshan. In this study, the Suijiang-Pingshan segment of the Jinshang River situated in the Wumeng Mountain Area was selected as case study. The regional groundwater shortage type, hydrochemical evolution and spatial distribution characteristics were analyzed by integration of mathematical statistics, Piper and Gibbs diagrams. The source of excessive ions in groundwater was traced based on the indices' correlation of soil, rock and water samples and calculation of soil enrichment factors. The analytical results are summarized as follows:(1)Groundwater resource in the clastic-rock area was identified as resource-based water shortage areas with dispersive, low-flow and large-number features. Groundwater resource in the carbonate rock area was typical of engineering water shortage area with concentrated, high-flow and low-number characteristics.(2)The water-rock interaction was relatively weak in the study area. HCO3-type groundwater with low TDS accounted for 81.57% of total groundwater resource, which was distributed in mountain area. HCO3-type groundwater was recharge by precipitation and discharged nearby. HCO3·SO4 and SO4 type groundwater accounted for 17.69% and 0.74%, respectively, exposed in both side of Jinshajiang River.(3)The concentrations of groundwater indicated the I and II types. NO-3 was the main excessive ion and originated from agricultural and domestic sewage. Al and Fe were the secondary excessive ions, derived from high Al and Fe concentrations in the strata.(4)The exploitation of regional groundwater resource included direct drinking for surface water, disperse drinking for groundwater in clastic rock area, concentrating and extraction from wells and drilling holes. This study is expected to directly serve for safe drinking and rational utilization of groundwater resources in the Wumeng Mountain areas.

参考文献/References:

[1] 梁晨霞,王艳慧,徐海涛,等. 贫困村空间分布及影响因素分析——以乌蒙山连片特困区为例[J]. 地理研究,2019,38(6):1389-1402. [LIANG Chenxia, WANG Yanhui, XU Haitao, et al. Analyzing spatial distribution of poor villages and their poverty contributing factors: A case study from Wumeng Mountain Area [J]. Geographical Research, 2019, 38(6): 1389-1402] DOI: 10.11821/dlyj020180024
[2] 张玉韩,侯华丽,沈悦,等. 乌蒙山片区矿产资源开发功能分区及扶贫政策探索[J]. 资源科学,2018,40(9):1716-1729. [ZHANG Yuhan, HOU Huali, SHEN Yue, et al. Study on the functional division of mineral resources development and poverty alleviation policy in Wumeng Mountain Area [J]. Resources Science, 2018, 40(9): 1716-1729] DOI: 10.18402/resci.2018.09.03
[3] 马成有. 地下水环境质量评价方法研究[D]. 长春:吉林大学,2009: 11-20. [MA Chengyou. Study on the groundwater environmental quality assessment methods [D]. Changchun: Jilin University, 2009: 11-20]
[4] 谢洪波. 焦作市地下水质量综合评价及污染预警研究[D]. 西安:长安大学,2008:68-91. [XIE Hongbo. Study on synthetic appraise of groundwater quality and pollution warning-forecast in Jiaozuo [D]. Xi'an: Chang'an University, 2008: 68-91]
[5] 洪涛,谢运球,喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境,2016,44(1):11-18. [HONG Tao, XIE Yunqiu, YU Qiwen, et al. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, southwestern China [J]. Earth and Environment, 2016, 44(1): 11-18] DOI: 10.14050/j.cnki.1672-9250.2016.01.002
[6] 钟金先,崔英山,毛郁,等. 乌蒙山重点地区水文地质特征分析[J]. 地下水,2016,38(5):179-182. [ZHONG Jinxian, CUI Yingshan, MAO Yu, et al. Analysis on hydrogeology characteristics in Wu Mengshan key areas [J]. Ground Water, 2016, 38(5): 179-182]
[7] 李峰锐,李海侠,钱康,等. 乌蒙山五寨地区地下水水质特征分析[J]. 中国水运,2019(4):124-125. [LI Fengrui, LI Haixia, QIAN Kang, et al. Analysis of groundwater quality characteristics in Wuzhai area of Wumeng Mountain [J]. China Water Transport, 2019(4): 124-125]
[8] 任蕊,杨成程,匡野. 乌蒙山岩溶缺水地区表层岩溶泉有效开发模式研究[J]. 地下水,2018,40(2):24-26. [REN Rui, YANG Chengcheng, KUANG Ye. Study on the exploitation model of epikarst spring karst water Wumengshan area [J]. Ground Water, 2018, 40(2): 24-26]
[9] 蒲文斌,钱康,陈鹏, 等. 乌蒙山1:5万奎香幅地下水水质评价及相关性分析[J]. 地下水,2020,42(2):7-10,33. [PU Wenbin, QIAN Kang, CHEN Peng, et al. Groundwater quality assessment and correlation analysis in 1:50000 kuixiang sheet of Wumeng Mountain [J]. Ground Water, 2020, 42(2): 7-10,33] DOI: 10.19807/j.cnki.DXS.2020-02-003
[10] 黄思霜,许模,杨艳娜,等. 川东高陡背斜区水文网控制的地下岩溶空间分异研究[J]. 山地学报,2020,38(1):83-92. [HUANG Sishuang, XU Mo, YANG Yanna, et al. Spatial differentiation of underground karst controlled by hydrological network in high-steep anticline in eastern Sichuan, China [J]. Mountain Research, 2020, 38(1):83-92] DOI: 10.16089/j.cnki.1008-2786.000493
[11] 成胜,许模,杨艳娜,等. 川东褶皱带明月峡背斜区地下岩溶发育规律[J]. 长江科学院院报,2020,37(11):114-120. [CHENG Sheng, XU Mo, YANG Yanna, et al. Study on the development rules of underground karst in the Mingyue gorge anticline area of the eastern Sichuan tectonic belt [J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(11):114-120] DOI: 10.11988/ckyyb.20190832
[12] 栾风娇,周金龙,贾瑞亮,等. 新疆巴里坤—伊吾盆地地下水水化学特征及成因[J]. 环境化学,2017,36(2):380-389. [LUAN Fengjiao, ZHOU Jinlong, JIA Ruiliang, et al. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang [J]. Environmental Chemistry, 2017, 36(2): 380-389] DOI: 10.7524/j.issn.0254-6108.2017.02.2016062001
[13] 李巧,周金龙,高业新,等. 新疆玛纳斯河流域平原区地下水水文地球化学特征研究[J]. 现代地质,2015,29(2):238-244. [LI Qiao, ZHOU Jinlong, GAO Yexin, et al. Groundwater hydro-geochemistry in plain of Manasi river basin, Xinjiang [J]. Geoscience, 2015, 29(2): 238-244]
[14] 唐金平,张强,胡漾,等. 巴中北部岩溶山区地下水化学特征及演化分析[J]. 环境科学,2019,40(10):4543-4552. [TANG Jinping, ZHANG Qiang, HU Yang, et al. Hydrochemical characteristics of karst groundwater in the mountains of northern Bazhong city, China [J]. Environmental Science, 2019, 40(10): 4543-4552] DOI: 10.13227/j.hjkx.201904068
[15] 吴春勇,苏小四,郭金淼,等. 鄂尔多斯沙漠高原白垩系地下水水化学演化的多元统计分析[J]. 世界地质,2011,30(2):244-253. [WU Chunyong, SU Xiaosi, GUO Jinmiao, et al. Multivariate statistical analysis of hydrogeochemical evolution of groundwater in Cretaceous aquifer Ordos desert plateau [J]. Global Geology, 2011,30(2): 244-253] DOI: 10. 3969/j.issn.1004-5589.2011.02.013
[16] 赵江涛,周金龙,梁川,等. 新疆焉耆盆地平原区地下水演化的主要水文地球化学过程分析[J]. 环境化学,2017,36(6):1397-1406. [ZHAO Jiangtao, ZHOU Jinlong, LIANG Chuan, et al. Hydrogeochemical process of evolution of groundwater in plain area of Yanqi, Xinjiang [J]. Environmental Chemistry, 2017, 36(6): 1397-1406] DOI: 10.7524/j.issn.0254-6108.2017.06.2016091807
[17] 焦艳军,王广才,崔霖峰,等. 济源盆地地表水和地下水的水化学及氢、氧同位素特征[J]. 环境化学,2014,33(6):962-968. [JIAO Yanjun, WANG Guangcai, CUI Linfeng, et al. Characteristics of hydrochemistry and stable hydrogen, oxygen isotopes in surface water and groundwater in Jiyuan Basin [J]. Environmental Chemistry, 2014, 33(6): 962-968] DOI: 10.7524/j.issn.0254-6108.2014.06.023
[18] PETERMANN E, GIBSON J J, KNOLLER K, et al. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water(18O, 2H)and radon(222Rn)mass balances [J]. Hydrological Processes, 2018, 32(6): 805-816. DOI: 10.1002/hyp.11456
[19] MEZGA K, URBANC J, CERAR S. The isotope altitude effect reflected in groundwater: A case study from Slovenia [J]. Isotopes in Environmental and Health Studies, 2014, 50(1): 33-51. DOI: 10.1080/10256016.2013.826213
[20] 杨楠,苏春利,曾邯斌,等. 基于水化学和氢氧同位素的兴隆县地下水演化过程研究[J]. 水文地质工程地质,2020,47(6):154-162. [YANG Nan, SU Chunli, ZENG Hanbin, et al. Evolutional processes of groundwater in Xinglong county based on hydrochemistry and hydrogen and oxygen isotopes [J]. Hydrogeology and Engineering Geology, 2020, 47(6): 154-162] DOI: 10.16030/j.cnki.issn.1000-3665.202005027
[21] 张雅,苏春利,马燕华,等. 水化学和环境同位素对济南东源饮用水源地地下水演化过程的指示[J]. 环境科学,2019,40(6):2667-2674. [ZHANG Ya, SU Chunli, MA Yanhua, et al. Indicators of groundwater evolution processes based on hydrochemistry and environmental isotopes: A case study of the Dongyuan drinking water source area in Ji'nan city [J]. Environmental Science, 2019, 40(6): 2667-2674] DOI: 10.13227/j.hjkx.201810211
[22] 胡恭任,于瑞莲. 应用地积累指数法和富集因子法评价324国道塘头段两侧土壤的重金属污染[J]. 中国矿业,2008,17(4):48-51. [HU Gongren, YU Ruilian. Application of index of geo-accumulation and enrichment factor in assessment of heavy metal contamination in soil of tangtou section on No. 324 main roads [J]. China Mining Magazine, 2008, 17(4): 48-51]
[23] BLASER P, ZIMMERMANN S, LUSTER J, et al. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils [J]. The Science of the Total Environment, 2000, 249: 257-280. DOI: 10.1016/S0048-9697(99)00522-7
[24] TEIXEIRA E C, ORTIZ L S, ALVES M F C C, et al. Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacui, RS, Brazil [J]. Environmental Geology, 2001,41:145-154. DOI: 10.1007/s002540100257
[25] 崔龙鹏,白建峰,史永红,等. 采矿活动对煤矿区土壤中重金属污染研究[J]. 土壤学报,2004,41(6):896-904. [CUI Longpeng, BAI Jianfeng, SHI Yonghong, et al. Heavy metals in soil contaminated by coal mining activity [J]. Acta Pedologica Sinica, 2004, 41(6): 896-904]
[26] 马宏瑞,张茜,季俊峰,等. 长江南京段近岸沉积物中重金属富集特征与形态分析[J]. 生态环境学报,2009,18(6):2061-2065. [MA Hongrui, ZHANG Qian, JI Junfeng, et al. Enrichment and speciation analysis of heavy metals in the sediments of Yangtze River(Nanjing section)[J]. Ecology and Environmental Sciences, 2009, 18(6): 2061-2065] DOI:10.16258/j.cnki.1674-5906.2009.06.038

备注/Memo

备注/Memo:
收稿日期(Received date):2021-03-06; 改回日期(Accepted data):2021-10-11
基金项目(Foundation item):中国地质调查局项目(DD20160287)。[China Geological Survey Project(DD20160287)]
作者简介(Biography):魏良帅(1979-),男,辽宁抚顺人,硕士,高级工程师,主要研究方向:环境工程地质与工程水文地质。[WEI Liangshuai(1979- ), male, born in Fushun, Liaoning province, master, senior engineer, research on environmental engineering geology and engineering hydrogeology] E-mail:53831087@qq.com
更新日期/Last Update: 2021-09-30