[1]梁 瑛,曹文豪,季宪军,等.成都粘土泥浆流变模型探讨[J].山地学报,2021,(2):218-225.[doi:10.16089/j.cnki.1008-2786.000589]
 LIANG Ying,CAO Wenhao,JI Xianjun,et al.Discussion on the Rheological Model of Chengdu Clay Slurry[J].Mountain Research,2021,(2):218-225.[doi:10.16089/j.cnki.1008-2786.000589]
点击复制

成都粘土泥浆流变模型探讨()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第2期
页码:
218-225
栏目:
山地灾害
出版日期:
2021-03-25

文章信息/Info

Title:
Discussion on the Rheological Model of Chengdu Clay Slurry
文章编号:
1008-2786-(2021)2-218-8
作者:
梁 瑛1 曹文豪1季宪军1潘华利2欧国强2*
1. 南阳理工学院,河南 南阳 473004; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610041
Author(s):
LIANG Ying1 CAO Wenhao1 JI Xianjun1 PAN Huali2 OU Guoqiang2*
1. Nanyang Institute of Technology, Nanyang 473004, He'nan, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu 610041, China
关键词:
成都粘土 泥浆 流变实验 流变模型 H-B模型
Keywords:
Chengdu Clay slurry rheological experiment Rheological Model H-B model
分类号:
P642.2
DOI:
10.16089/j.cnki.1008-2786.000589
文献标志码:
A
摘要:
泥浆是泥石流动力学的重要研究对象。细小的黏性颗粒是黏性泥石流泥浆的基本组成部分,传统流变模型可以描述粘性泥石流中颗粒物质相互作用,然而各灾害点物质组成的差异性使得泥浆流变模型的应用各有不同,且当前研究缺少对不同模型应用的详细讨论。本研究利用MCR301流变仪,开展不同含水量成都粘土泥浆流变实验,分析成都粘土泥浆剪切应力随剪切速率变化过程、含水量对剪切应力的影响; 对比分析幂律模型、宾汉模型和Herschel & Bulkley模型(H-B模型),拟合各含水量成都粘土泥浆的流变实验结果。得出如下结论:(1)随着含水量由50%增大到400%,成都粘土泥浆切应力迅速降低,由超过8000 Pa降低到5 Pa左右; 当剪切速率约为0.2 s-1时,剪切应力随剪切速率增加而迅速增大,但当剪切速率大于0.2 s-1时,剪切应力随剪切速率增加而增长缓慢,成都粘土泥浆表现出典型的剪切稀化非牛顿体流体;(2)H-B模型能很好地反映各含水量成都粘土泥浆剪切应力与剪切速率的变化全过程(剪切稀化),是拟合成都粘土泥浆流变过程的最佳数学模型;(3)泥浆屈服应力(τHB)和流动指数(ηHB)随含水量的增加迅速减小。本文流变模型实验的开展和研究对深入认知和探索泥石流致灾全过程具有重要意义。
Abstract:
To understand the mechanical properties of slurry in debris flow fluid is a prerequisite for recognizing the movement process of debris flow. A proper rheological model of slurry in debris flow body can contribute to a better understanding of the process of debris flow initiation and the process of the particles interaction during moving of the viscous debris flow. In this study, MCR301 rheometer was used in the laboratory testing of slurry properties, it conducted rheological experiments on the slurries of Chengdu Clay. The change process of shear stress with shear rate was analyzed, following by the influence of water content on shear stress. It introduced power law model, Bingham model and Herschel & Bulkley model separately to compare the fitting of the rheological test results of the Chengdu Clay slurry with various water contents. The following conclusions were drawn as hereafter:(1)The shear stress of the Chengdu Clay slurry decreased rapidly from more than 8000 Pa to about 5 Pa with the increase of water content from 50% to 400%. As the shear rate was small(about 0.2 s-1), the shear stress increased rapidly with the increase of shear rate. In the case of the shear rate exceeding a certain value, the shear stress increased slowly with the increase of shear rate, suggesting that the Chengdu Clay slurry be a typical shear-thinning non-Newtonian fluid definitely;(2)H-B model could well reflect the whole process of shear stress with shear rate(shear-thinning)of the clay slurry with varied water contents, and it was recognized as the best mathematical model for the fitting of rheological process of the slurry of Chengdu Clay;(3)On this basis, the influence of water content on the rheological parameters(τHB、ηHB)of Chengdu Clay mud was analyzed, and the conclusion that the yield stress(τHB)and flow index(ηHB)of Chengdu Clay mud decrease rapidly with the increase of water content was obtained. Based on the rheological experiment, this paper discusses the rheological model of mud, which is of great significance for further understanding and exploring the whole process of debris flow disaster.

参考文献/References:

[1] 石建军, 李保珠, 李鹏, 等. 元谋县9?17特大泥石流特征及形成机理分析[J]. 地质论评, 2018,64(3):665-673. [SHI Jianjun, LI Baozhu, LI Peng, et al. Analysis of characteristics and formation mechanism for the 9?17 giant debris flow in Yuanmou country, Yunnan province [J], Geological Review. 2018,64(3):665-673] DOI: 10.16509/j.georeview.2018.03.012
[2] 沈寿长, 谢慎良. 泥石流体的结构模式和粗颗粒对泥浆体流变特性的影响[J]. 泥沙研究, 1983(3): 12-19. [SHEN Shouchang, XIE Shenliang. Mode of structure of debris fluid and the effect of coarse grains on the rheological characteristics of slurry [J]. Journal of Sediment Research, 1983(3):12-19] DOI: 10.16239/j.cnki.0468-155x.1983.03.002
[3] PANKOW K L, MOORE J R, HALE J M, et al. Massive landslide at Utah copper mine generates wealth of geophysical data [J]. GSA Today, 2014, 24(1):4-9. DOI: 10.1130/GSATG191A.1.
[4] 赵春红. 基于物质组成和冲击特性的泥石流冲击力研究[D]. 重庆:重庆交通大学, 2017:82-88. [ZHAO Chunhong. Study on impact force of debris flow based on material composition and impact [D]. Chongqing: Chongqing Jiaotong University, 2017: 82-88]
[5] 王裕宜,詹钱登,严壁玉,等.泥石流体的流变特性与运移特征[M].长沙: 湖南科学技术出版社,2014: 184-260. [WANG Yuyi, JAN Chyandeng, YAN Biyu, et al. Debris flow rheology and movement [M]. Changsha: Hunan Science and Technology Press, 2014: 184-260]
[6] 杨红娟, 韦方强, 胡凯衡,等. 不同上限粒径泥石流浆体的流变参数变化规律[J]. 水利学报, 2016, 47(7):884-890. [YANG Hongjuan, WEI Fangqiang, HU Kaiheng, et al. Rheological parameters of debris flow slurries with different maximum grain sizes [J]. Journal of Hydraulic Engineering, 2016,47(7):884-890] DOI: 10.13243/j.cnki.slxb.20150931
[7] PELLEGRINO A M, SCHIPPA, L. Rheological modeling of macro viscous flows of granular suspension of regular and irregular particles [J]. Water, 2018(10):21. DOI: 10.3390/w10010021
[8] 杨红娟,韦方强,胡凯衡. 泥石流浆体黏度计算中最大体积分数的确定[J]. 山地学报, 2018,36(3):382-390. [YANG Hongjuan, WEI Fangqiang, HU Kaiheng. Determination of the maximum packing fraction for calculating slurry viscosity of debris flow [J]. Mountain Research, 2018,36(3):382-390] DOI: 10.16089/j.cnki.1008-2786.000334
[9] SOSIO R, CROSTA, G B. Rheology of concentrated granular suspensions and possible implication for debris flow modeling [J]. Water Resources Research, 2009, 45:W03412. DOI: 10.1029/2008WR006920
[10] 马煜. 黏土矿物成份与泥石流屈服应力的关系研究[D]. 成都:成都理工大学, 2011:30-33. [MA Yu. Research on clay minerals and yield stress of debris flow by experiments [D]. Chengdu:Chengdu University of Technology, 2011:30-33]
[11] 刘曙光. 天然泥石流剪切应变特性试验研究[J]. 人民长江, 2016,47(16):83-86. [LIU Shuguang. Test study on shear strain characteristics of debris flow [J]. Yangtze River, 2016,47(16):83-86] DOI: 10.16232/j.cnki.1001-4179.2016.16.018
[12] CAROTENUTO C,MEROLA M C,ALVAREZ-ROMERO M,et al.Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content [J].Colloids and Surfaces A: Physicochemical Engineering Aspects,2015,466:57-65.DOI: 10.1016/j.colsurfa.2014.10.037
[13] 季宪军,梁瑛,潘华利,等. 含水率对泥石流浆体力学特性影响实验研究[J]. 山地学报, 2019,37(1):70-77. [JI Xianjun, LIANG Ying, PAN Huali, et al. Experimental study on influence of water content on mechanical properties of debris flow slurry [J]. Mountain Research, 2019,37(1):70-77] DOI: 10.16089/j.cnki.1008-2786.000400
[14] MAJOR J J, PIERSON T C. Debris flow rheology: Experimental analysis of fine-grained slurries [J]. Water Resources Research, 1992, 28(3):841-857. DOI: 10.1029/91WR02834
[15] REINER V M. Ueber die Strömung einer elastischen Flüssigkeit durch eine Kapillare [J]. Kolloid-Zeitschrift, 1926, 39(1):80-87. DOI: 10.1007/BF01425357
[16] JEONG S W, LEROUEIL S, LOCAT J. Applicability of power law for describing the rheology of soils of different origins and characteristics [J]. Canadian Geotechnical Journal, 2009,46(9): 1011-1023. DOI: 10.1139/T09-031
[17] SCOTTO DI SANTOLO A, PELLEGRINO A M, EVANGELISTA A, et al. Rheological behaviour of reconstituted pyroclastic debris flow [J]. Geotechnique, 2012,62(1):19-27. DOI: 10.1680/geot.10.P.005
[18] PARSONS J D, WHIPPLE K X, SIMONI A. Experimental study of the grain-flow, fluid-mud transition in debris flows [J]. The Journal of Geology, 2001, 109(4):427-447. DOI: 10.1086/320798
[19] DE BLASIO F V, ELVERHOI A, ISSLER D, et al. Flow models of natural debris flows originating from overconsolidated clay materials [J]. Marine Geology, 2004, 213:439-455. DOI: 10.1016/j.margeo.2004.10.018
[20] HERSCHEL W H, BULKLEY R. Konsistenzmessungen von gummi-benzollösungen [J]. Kolloid-Zeitschrift, 1926, 39(4):291-300. DOI: 10.1007/BF01432034
[21] CHEN H, LEE C F. Runout analysis of slurry flows with Bingham model [J]. Journal of Geotechnical and Environmental Engineering, 2002,128(12): 1032-1042. DOI: 10.1061/(ASCE)1090-0241(2002)128:12(1032)
[22] PELLEGRINO A M, SCHIPPA L. A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows [J]. Environmental Earth Sciences, 2018,77(22):749. DOI: 10.1007/s12665-018-7934-0
[23] SCHIPPA L. Modeling the effect of sediment concentration on the flow-like behavior of natural debris flow [J]. International Journal of Sediment Research, 2020, 35( 4):315-327. DOI: 10.1016/j.ijsrc.2020.03.001
[24] 应立朝, 梁斌, 王全伟, 等. 成都平原区成都黏土的粒度特征及其成因意义[J]. 沉积与特提斯地质, 2012, 32(1):72-77. [YING Lichao, LIANG Bin, WANG Quanwei, et al. Grain size analysis and origin of the Chengdu clay from the Chengdu plain, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 2012, 32(1):72-77]
[25] 赵志中, 乔彦松, 王燕, 等. 成都平原红土堆积的磁性地层学及古环境记录[J]. 中国科学:地球科学, 2007,37(3):370-377. [ZHAO Zhizhong, QIAO Yansong, WANG Yan, et al. Magnetostratigraphic and paleoclimatic studies on the red earth formation from the Chengdu plain in Sichuan province, China [J]. Chinese Science: Earth Science, 2007, 37(3):370-377]

相似文献/References:

[1]陈治荣,何银武.据~(14)C年龄数据浅议广汉粘土与成都粘土的时代归属[J].山地学报,1990,(03):167.
[2]胡兆国,冯金良,鞠建廷,等.成都粘土中石英的粒度分布及其表面微结构特征[J].山地学报,2010,(04):392.
[3]葛璐月a,b,文星跃a,等.成都粘土与其下伏粘土粒度特征对比及古环境意义[J].山地学报,2019,(05):681.[doi:10.16089/j.cnki.1008-2786.000459]
 GE Luyuea,b,WEN Xingyuea,et al.Comparison of Particle Size Characteristics Between the Chengdu Clay and Its Underlying Clay: Implication for Paleoenvironment Changes[J].Mountain Research,2019,(2):681.[doi:10.16089/j.cnki.1008-2786.000459]

备注/Memo

备注/Memo:
收稿日期(Received date):2020-01-22; 改回日期(Accepted date): 2021-02-15
基金项目(Foundation item):国家自然科学基金(41672357,51679229,41672318)。[National Natural Science Foundation of China(41672357,51679229,41672318)]
作者简介(Biography):梁瑛(1974-),女,河南人,硕士,副教授,主要研究方向:工程应用数学。[LIANG Ying(1974-),female, born in Henan province, M.Sc., associate professor, research on engineering applied mathematics]E-mail:liangying589@163.com
*通讯作者(Corresponding author):欧国强(1958-),男,四川人,博士,研究员,主要研究方向:山地灾害动力学。[OU Guoqiang(1958-), male, Ph.D., professor, research on mountain disaster dynamics] E-mail:ougq@imde.ac.cn
更新日期/Last Update: 2021-03-30