参考文献/References:
[1] 石建军, 李保珠, 李鹏, 等. 元谋县9?17特大泥石流特征及形成机理分析[J]. 地质论评, 2018,64(3):665-673. [SHI Jianjun, LI Baozhu, LI Peng, et al. Analysis of characteristics and formation mechanism for the 9?17 giant debris flow in Yuanmou country, Yunnan province [J], Geological Review. 2018,64(3):665-673] DOI: 10.16509/j.georeview.2018.03.012
[2] 沈寿长, 谢慎良. 泥石流体的结构模式和粗颗粒对泥浆体流变特性的影响[J]. 泥沙研究, 1983(3): 12-19. [SHEN Shouchang, XIE Shenliang. Mode of structure of debris fluid and the effect of coarse grains on the rheological characteristics of slurry [J]. Journal of Sediment Research, 1983(3):12-19] DOI: 10.16239/j.cnki.0468-155x.1983.03.002
[3] PANKOW K L, MOORE J R, HALE J M, et al. Massive landslide at Utah copper mine generates wealth of geophysical data [J]. GSA Today, 2014, 24(1):4-9. DOI: 10.1130/GSATG191A.1.
[4] 赵春红. 基于物质组成和冲击特性的泥石流冲击力研究[D]. 重庆:重庆交通大学, 2017:82-88. [ZHAO Chunhong. Study on impact force of debris flow based on material composition and impact [D]. Chongqing: Chongqing Jiaotong University, 2017: 82-88]
[5] 王裕宜,詹钱登,严壁玉,等.泥石流体的流变特性与运移特征[M].长沙: 湖南科学技术出版社,2014: 184-260. [WANG Yuyi, JAN Chyandeng, YAN Biyu, et al. Debris flow rheology and movement [M]. Changsha: Hunan Science and Technology Press, 2014: 184-260]
[6] 杨红娟, 韦方强, 胡凯衡,等. 不同上限粒径泥石流浆体的流变参数变化规律[J]. 水利学报, 2016, 47(7):884-890. [YANG Hongjuan, WEI Fangqiang, HU Kaiheng, et al. Rheological parameters of debris flow slurries with different maximum grain sizes [J]. Journal of Hydraulic Engineering, 2016,47(7):884-890] DOI: 10.13243/j.cnki.slxb.20150931
[7] PELLEGRINO A M, SCHIPPA, L. Rheological modeling of macro viscous flows of granular suspension of regular and irregular particles [J]. Water, 2018(10):21. DOI: 10.3390/w10010021
[8] 杨红娟,韦方强,胡凯衡. 泥石流浆体黏度计算中最大体积分数的确定[J]. 山地学报, 2018,36(3):382-390. [YANG Hongjuan, WEI Fangqiang, HU Kaiheng. Determination of the maximum packing fraction for calculating slurry viscosity of debris flow [J]. Mountain Research, 2018,36(3):382-390] DOI: 10.16089/j.cnki.1008-2786.000334
[9] SOSIO R, CROSTA, G B. Rheology of concentrated granular suspensions and possible implication for debris flow modeling [J]. Water Resources Research, 2009, 45:W03412. DOI: 10.1029/2008WR006920
[10] 马煜. 黏土矿物成份与泥石流屈服应力的关系研究[D]. 成都:成都理工大学, 2011:30-33. [MA Yu. Research on clay minerals and yield stress of debris flow by experiments [D]. Chengdu:Chengdu University of Technology, 2011:30-33]
[11] 刘曙光. 天然泥石流剪切应变特性试验研究[J]. 人民长江, 2016,47(16):83-86. [LIU Shuguang. Test study on shear strain characteristics of debris flow [J]. Yangtze River, 2016,47(16):83-86] DOI: 10.16232/j.cnki.1001-4179.2016.16.018
[12] CAROTENUTO C,MEROLA M C,ALVAREZ-ROMERO M,et al.Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content [J].Colloids and Surfaces A: Physicochemical Engineering Aspects,2015,466:57-65.DOI: 10.1016/j.colsurfa.2014.10.037
[13] 季宪军,梁瑛,潘华利,等. 含水率对泥石流浆体力学特性影响实验研究[J]. 山地学报, 2019,37(1):70-77. [JI Xianjun, LIANG Ying, PAN Huali, et al. Experimental study on influence of water content on mechanical properties of debris flow slurry [J]. Mountain Research, 2019,37(1):70-77] DOI: 10.16089/j.cnki.1008-2786.000400
[14] MAJOR J J, PIERSON T C. Debris flow rheology: Experimental analysis of fine-grained slurries [J]. Water Resources Research, 1992, 28(3):841-857. DOI: 10.1029/91WR02834
[15] REINER V M. Ueber die Strömung einer elastischen Flüssigkeit durch eine Kapillare [J]. Kolloid-Zeitschrift, 1926, 39(1):80-87. DOI: 10.1007/BF01425357
[16] JEONG S W, LEROUEIL S, LOCAT J. Applicability of power law for describing the rheology of soils of different origins and characteristics [J]. Canadian Geotechnical Journal, 2009,46(9): 1011-1023. DOI: 10.1139/T09-031
[17] SCOTTO DI SANTOLO A, PELLEGRINO A M, EVANGELISTA A, et al. Rheological behaviour of reconstituted pyroclastic debris flow [J]. Geotechnique, 2012,62(1):19-27. DOI: 10.1680/geot.10.P.005
[18] PARSONS J D, WHIPPLE K X, SIMONI A. Experimental study of the grain-flow, fluid-mud transition in debris flows [J]. The Journal of Geology, 2001, 109(4):427-447. DOI: 10.1086/320798
[19] DE BLASIO F V, ELVERHOI A, ISSLER D, et al. Flow models of natural debris flows originating from overconsolidated clay materials [J]. Marine Geology, 2004, 213:439-455. DOI: 10.1016/j.margeo.2004.10.018
[20] HERSCHEL W H, BULKLEY R. Konsistenzmessungen von gummi-benzollösungen [J]. Kolloid-Zeitschrift, 1926, 39(4):291-300. DOI: 10.1007/BF01432034
[21] CHEN H, LEE C F. Runout analysis of slurry flows with Bingham model [J]. Journal of Geotechnical and Environmental Engineering, 2002,128(12): 1032-1042. DOI: 10.1061/(ASCE)1090-0241(2002)128:12(1032)
[22] PELLEGRINO A M, SCHIPPA L. A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows [J]. Environmental Earth Sciences, 2018,77(22):749. DOI: 10.1007/s12665-018-7934-0
[23] SCHIPPA L. Modeling the effect of sediment concentration on the flow-like behavior of natural debris flow [J]. International Journal of Sediment Research, 2020, 35( 4):315-327. DOI: 10.1016/j.ijsrc.2020.03.001
[24] 应立朝, 梁斌, 王全伟, 等. 成都平原区成都黏土的粒度特征及其成因意义[J]. 沉积与特提斯地质, 2012, 32(1):72-77. [YING Lichao, LIANG Bin, WANG Quanwei, et al. Grain size analysis and origin of the Chengdu clay from the Chengdu plain, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 2012, 32(1):72-77]
[25] 赵志中, 乔彦松, 王燕, 等. 成都平原红土堆积的磁性地层学及古环境记录[J]. 中国科学:地球科学, 2007,37(3):370-377. [ZHAO Zhizhong, QIAO Yansong, WANG Yan, et al. Magnetostratigraphic and paleoclimatic studies on the red earth formation from the Chengdu plain in Sichuan province, China [J]. Chinese Science: Earth Science, 2007, 37(3):370-377]