[1]李 叶,张艳红,陈子琦,等.中高纬度山区气温空间化的方法比较研究——以大兴安岭北麓为例[J].山地学报,2021,(2):174-182.[doi:10.16089/j.cnki.1008-2786.000585]
 LI ye,ZHANG Yanhong,CHEN Ziqi,et al.Comparative Study on Spatialization Methods of Air Temperature in Middle and High Latitude Mountainous Areas: A Case Study of Northern Foot of the Daxing'anling Mountains[J].Mountain Research,2021,(2):174-182.[doi:10.16089/j.cnki.1008-2786.000585]
点击复制

中高纬度山区气温空间化的方法比较研究——以大兴安岭北麓为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第2期
页码:
174-182
栏目:
山地环境
出版日期:
2021-03-25

文章信息/Info

Title:
Comparative Study on Spatialization Methods of Air Temperature in Middle and High Latitude Mountainous Areas: A Case Study of Northern Foot of the Daxing'anling Mountains
文章编号:
1008-2786-(2021)2-174-9
作者:
李 叶1张艳红1陈子琦12刘兆礼2*
1.吉林大学 地球探测科学与技术学院,长春 130026; 2.中国科学院 东北地理与农业生态研究所,长春 130012
Author(s):
LI ye1 ZHANG Yanhong1 CHEN Ziqi12 LIU Zhaoli2*
1.College of Geo-Exploration Science & Technology, Jilin University, Changchun 130026, China; 2.Northeast Institute of geography and Agriculture, Chinese Academy of Sciences, Changchun 130012,China
关键词:
气温 空间插值 多元线性回归 BP神经网络 适用性 大兴安岭
Keywords:
air temperature spatial interpolation Multiple Linear Regression Error Back Propagation applicability Daxing'anling Mountains
分类号:
P942
DOI:
10.16089/j.cnki.1008-2786.000585
文献标志码:
A
摘要:
为比较和探讨中高纬度山区多种气温空间插值方法的精度及适用性,本文利用大兴安岭山脉北段及其周边区域气象站点实测气温数据,以平均绝对误差(MAE)和均方根误差(RMSE)作为评价指标对六种气温空间插值方法进行精度比较。研究结果表明:(1)反距离权重插值法(IDW)、普通克里金插值法(OK)、样条函数插值法(Spline)三种传统的气温插值方法只能粗略反映气温要素的空间分布状况,不适合气象站点稀少而地形起伏较大的区域。(2)BP神经网络(MAE:0.62 ℃~1.43 ℃,RMSE:0.84 ℃~2.02 ℃)和线性回归+残差内插的空间插值算法(MAE:0.61 ℃~1.55 ℃,RMSE:0.82 ℃~2.30 ℃)优于常规的插值方法,且BP神经网络算法能较好地反映研究区地形的高低变化以及山脉的走向。(3)在一天中的12:00—22:00时间段内,六种气温空间插值方法的插值精度与插值效果都不理想。对比六种气温空间插值方法表明,BP神经网络算法对研究区气温空间模拟效果最好,且插值效果与训练样本数量成正比。本文可为中高纬度山区气温空间化研究提供参考。
Abstract:
To compare the accuracy and applicability of six temperature spatial interpolation methods in mid-high latitudes, the measured temperature data from meteorological stations were used in this study. The accuracy of six temperature spatial interpolation methods was compared by MAE and RMSE as evaluation indexes. The research result showed that:(1)The three traditional temperature interpolation methods including IDW, OK, and Spline, could roughly reflect the spatial distribution of temperature factors, which were not suitable for areas with rare meteorological stations and undulations terrain.(2)Error Back Propagation(MAE: 0.62 ℃~1.43 ℃, RMSE: 0.84 ℃~2.02 ℃)and MLR+RI(MAE: 0.61 ℃~1.55 ℃, RMSE: 0.82 ℃~2.30 ℃)were superior to the conventional interpolation methods, and it could well reflect the changes of terrain and the extension of the mountains range in the study area.(3)In the period of 12:00 to 22:00 of a day, the interpolation accuracy and effect of the six temperature interpolation methods were not ideal. The results showed that the Error Back Propagation had the best simulation effect on spatial of temperature in the study area, and the interpolation effect was proportional to the number of training samples. The study provides a reference for the research of temperature spatialization in mid-high latitude mountainous areas.

参考文献/References:

[1] 刘志红, LI Lingtao, MCVICAR TR, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象,2008,34(2):92-100. [LIU Zhihong, LI Lingtao, MCVICAR T R, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLIN [J]. Meteorological Monthly, 2008,34(2):92-100] DOI:10.7519/j.issn.1000-0526.2008.2.013
[2] LI Zhi, ZHENG Fenli, LIU Wenzhao, et al. Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st century [J]. Global and Planetary Change, 2012(82-83). DOI:10.1016/j.gloplacha.2011.11.008.
[3] 易桂花,张廷斌,何奕萱,等. 四种气温空间插值方法适用性分析[J]. 成都理工大学学报(自然科学版),2020,47(1):115-128. [YI Guihua, ZHANG Tingbin, HE Yixuan, et al. Applicability analysis of four spatial interpolation methods for air temperature [J]. Journal of Chengdu University of Technology(Science &Technology Edition), 2020,47(1):115-128] DOI:10.3969/j.issn.1671-9727.2020.01.11
[4] 海日古丽?纳麦提, 玉素甫江?如素力, 玛地尼亚提?地里夏提,等. ERA-Interim和GHCN-CAM再分析气温数据在天山山区的适应性分析[J]. 山地学报,2019,37(4):613-621. [HAIRIGULI Namaiti, YUSUFUJIANG Rusuli, MADINIYATI Dilixiati, et al. Adaptability analysis of ERA-Interim and GHCN-CAM reanalyzed data temperature values in Tianshan Mountains area, China [J]. Mountain Research, 2019,37(4):613-621] DOI:10.16089/j.cnki.1008-2786.000452
[5] 马秀霞, 黄领梅, 沈冰.陕西省月平均气温空间插值方法研究[J]. 水资源与水工程学报,2017,28(5):100-105. [MA Xiuxia, HUANG Lingmei, SHEN Bing. Study on spatial interpolation method of monthly mean temperature in Shaanxi Province [J]. Journal of Water Resources and Water Engineering, 2017,28(5):100-105] DOI:10.11705/j.issn.1672-643X.2017.05.17
[6] BARTIER P M, KELLER C P. Multivariate interpolation to incorporate thematic surface data using Inverse Distance Weighing(IDW)[J]. Computers & Geosciences, 1996, 22(7): 795-799. DOI: 10.1016/0098-3004(96)00021-0
[7] HOLDAWAY M R. Spatial modeling and interpolation of monthly temperatures using kriging [J]. Climate Research,1996, 6(3): 215-225. DOI:10.3354/cr006215
[8] HUDSON G,WACKERNAGEL H. Mapping temperatures using kriging with external drift: Theory and an example from Scotland [J]. International Journal of Climatology, 1994, 14(1): 77-91. DOI: 10.1002/joc.3370140107.
[9] LUO Z, WAHBA G, JOHNSON D R. Spatial-temporal analysis of temperature using smoothing spline ANOVA [J]. Journal of Climate,1998,11(1):18-28.
[10] 杨艳昭,郎婷婷,张超,等. 基于GIS的“一带一路”地区气温插值方法比较研究[J]. 地球信息科学学报,2020,22(4):867-876. [YANG Yanzhao, LANG Tingting, ZHANG Chao, et al. Comparative study of different temperature interpolation methods in the Belt and Road regions based on GIS [J]. Journal of Geo-information Science, 2020,22(4):867-876] DOI:10.12082/dqxxkx.2020.200060
[11] 王铁男,范永刚,李兄莲.基于地形因素插值分析内蒙古敖汉旗气温要素分布[J].北京农业,2016(4):148-150. [WANG Tienan, FAN Yonggang, LI Xionglian. Analysis of temperature factor distribution in Aohan Banner, Inner Mongolia based on topographic factor interpolation [J]. Beijing Agriculture, 2016(4):148-150] DOI:10.3969/j.issn.1000-6966.201601.084
[12] 石大明,姜忠宝,张晨琛. 吉林省站点气象要素精细化插值方法研究[J]. 气象灾害防御,2015,22(4):36-38. [SHI Daming, JIANG Zhongbao, ZHANG Chenchen. Research on the refined interpolation method of meteorological elements in stations in Jilin Province [J]. Meteorological Disaster Prevention, 2015,22(4):36-38] DOI:10.3969/j.issn.1006-5229.2015.04.010
[13] 白红英,马新萍,高翔,等. 基于DEM的秦岭山地1月气温及0℃等温线变化[J]. 地理学报,2012,67(11):1443-1450. [BAI Hongying, MA Xinping, GAO Xiang, et al. Variation in January temperature and 0℃ isothermal curve in Qinling Mountains based on DEM [J]. Acta Geographica Sinica, 2012,67(11):1443-1450] DOI:10.11821/xb201211001
[14] 孔玉涛,章东华. 现代天气预测技术[M]. 北京:气象出版社,2005:150-156. [KONG Yutao, ZHANG Donghua. Modern weather prediction technology [M]. Beijing: China Meteorological Press, 2005:150-156]
[15] 王定成,曹智丽,陈北京,等. 日气温多元时间序列局部支持向量回归预测[J]. 系统仿真学报,2016,28(3):654-660. [WANG Dingcheng, CAO Zhili, CHEN Beijing, et al. Multivariate time series local support vector regression forecast methods for daily temperature [J]. Journal of System Simulation,2016,28(3):654-660] DOI:10.16182/j.cnki.joss.2016.03.020
[16] 史秋晶,胡伍生. 神经网络BP算法在DEM内插中的应用研究[J]. 现代测绘,2007,30(5):3-5 [SHI Qiujing, HU Wusheng. Study on application of neural network BP algorithm in DEM interpolation [J]. Modern Surveying and Mapping, 2007,30(5):3-5] DOI:10.3969/j.issn.1672-4097.2007.05.001
[17] 廖顺宝,张赛. 多年平均气温数据空间化误差的尺度效应[J]. 地球信息科学学报,2014,16(1):8-14. [LIAO Shunbao, ZHANG Sai. Scale effect of errors on spatialization of annual mean air temperature data [J]. Journal of Geo-information Science, 2014,16(1):8-14] DOI:10.3724/SP.J.1047.2014.00008
[18] 何鹏,张媛,高文波,等.四川省多年平均气温数据空间插值方法与影响因素研究[J]. 中国农业资源与区划,2019,40(9):114-124. [HE Peng, ZHANG Yuan, GAO Wenbo, et al. Study on spatial interpolation method and influencing factors of annual mean air temperature data in Sichuan Province [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019,40(9):114-124] DOI:10.7621/cjarrp.1005-9121.20190913
[19] 王新宇,黄鹏程. 基于GIS的气象要素插值方法比较研究[J]. 测绘与空间地理信息,2020,43(5):167-170. [WANG Xinyu, HUANG Pengcheng. Comparative study of interpolation methods of meteorological factors based on GIS [J]. Geomatics & Spatial Information Technology, 2020,43(5):167-170]
[20] 李萌,王秀丽,丁媛媛. 几种逐日气温插值方法的比较[J]. 安徽农业科学,2014,42(25):8670-8674+8684. [LI Meng, WANG Xiuli, DING Yuanyuan. Comparison of several interpolation methods of daily temperature [J]. Journal of Anhui Agricultural Science, 2014, 42(25): 8670-8674+8684] DOI: 10.13989/j.cnki.0517-6611.2014.25.074
[21] 姜岩. 生态工程下桂西北植被NPP时空演变及影响因素分析[D]. 成都:成都理工大学,2016: 17-18. [JIANG Yan. Spatio-temporal dynamics of vegetation net primary productivity and its influence factors under the background of ecological in Northwestern Guangxi [D]. Chengdu: Chengdu University of Technology, 2016:17-18]
[22] 蔡哲,殷剑敏,辜晓青,等. 江西省40年平均气温的空间插值方法比较研究[G]//中国气象学会.中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集. 广东: 中国气象学会, 2007:653-659. [CAI Zhe, YIN Jianmin, GU Xiaoqing, et al. Comparison of spatial interpolation methods of mean temperature in Jiangxi Province over 40 years [G]//Chinese Meteorological Society. Proceedings of the 2007 annual meeting of the Chinese Meteorological Society on the construction of ecological meteorological business and agricultural meteorological disaster warning sub-conference. Guangdong: Chinese Meteorological Society, 2007:653-659]
[23] 李月臣,何志明,刘春霞. 基于站点观测数据的气温空间化方法评述[J]. 地理科学进展,2014,33(8):1019-1028. [LI Yuechen, HE Zhiming, LIU Chunxia. Review on spatial interpolation methods of temperature data from meteorological stations [J]. Progress in Geography, 2014,33(8):1019-1028] DOI: 10.11820/dlkxjz.2014.08.002
[24] 彭思岭. 气象要素空间插值方法优化研究[J]. 地理空间信息,2017,15(7):86-89+11. [PENG Siling. Optimized study on spatial interpolation methods for meteorological element [J]. Geospatial Information, 2017,15(7):86-89+11] DOI:10.3969/j.issn.1672-4623.2017.07.026
[25] 赵平伟,鲁镁,彭贵芬,等. 复杂地形区域平均气温空间插值方法研究[J]. 气象科技,2014,42(6):1002-1008. [ZHAO Pingwei, LU Mei, PENG Guifen, et al. Spatial interpolation method of average air temperature under complicated terrain [J]. Meteorological Science and Technology, 2014,42(6):1002-1008] DOI:10.19517/j.1671-6345.2014.06.011
[26] 王秀娟. 基于人工神经网络的保护区气温变化预测研究[D]. 吉林:吉林农业大学,2019:8-10. [WANG Xiujuan. Prediction of temperature change in protected area based on artificial neural network [D]. Jilin: Jilin Agricultural University, 2019: 8-10]
[27] 周红艺,叶颖燊,李辉霞. 基于DEM的广东省平均气温空间插值Ⅰ——研究方法[J]. 佛山科学技术学院学报(自然科学版), 2014,32(2):6-9. [ZHOU Hongyi, YE Yingsen, LI Huixia. Interpolation of average temperature based on the DEM in Guangdong Province I——the method [J]. Journal of Foshan University(Natural Science Edition), 2014,32(2):6-9] DOI:10.13797/j.cnki.jfosu.1008-0171.2014.0024
[28] 李军龙,张剑,张丛,等. 气象要素空间插值方法的比较分析[J]. 草业科学,2006,23(8):6-11. [LI Junlong, ZHANG Jian, ZHANG Cong, et al. Analyze and compare the spatial interpolation methods for climate factor [J]. Pratacultural Science, 2006,23(8):6-11] DOI:10.3669/j.issn.1001-0629.2006.08.002

相似文献/References:

[1]李军.山区气温空间分布模拟的DEM尺度影响[J].山地学报,2012,(06):688.
 LI Jun.Spatialscaling Effect of DEM on the Simulation of Spatial Distribution of Temperature in Mountain Area[J].Mountain Research,2012,(2):688.
[2]刘玉洪,张克映,马友鑫,等.哀牢山气温时空分布特征[J].山地学报,1996,(04):222.
[3]张丽旭,魏文寿.天山西部中山带积雪变化趋势与气温和降水的关系——以巩乃斯河谷为例[J].山地学报,2001,(05):403.
[4]李海涛,沈文清,桑卫国,等.MTCLIM模型(山地小气候模拟模型)的研究现状及其潜在应用[J].山地学报,2001,(06):533.
[5]何云玲,张一平.纵向岭谷区“通道-阻隔”作用下气温和降雨的空间分布特征[J].山地学报,2007,(02):169.
[6]王建雷,李英年,杜明远,等.祁连山冷龙岭南坡小气候及植被分布特征[J].山地学报,2009,(04):418.
[7]潘学鹏,吴喜芳,沈彦俊,等.三江并流河源区植被覆盖度对气候要素的响应[J].山地学报,2015,(02):218.
 PAN Xuepeng,WU Xifang,et al.Responses of Vegetation Coverage Changes to Climate Factors in the Source Regions of Three Parallel Rivers[J].Mountain Research,2015,(2):218.
[8]蓝永超,丁宏伟,胡兴林,等.黑河山区气温与降水的季节变化特征及其区域差异[J].山地学报,2015,(03):294.
 LAN Yongchao,DING Hongwei,HU Xinglin,et al.The Seasonal Change Characteristics of Temperature, Precipitation in the Mountain Areas of the Heihe River and Their Regional Differences[J].Mountain Research,2015,(2):294.
[9]刘友存,侯兰功*,焦克勤,等.全球气候指数与天山地区气温变化遥相关分析[J].山地学报,2016,(06):679.[doi:10.16089/j.cnki.1008-2786.000174]
 LIU Youcun,HOU Langong*,JIAO Keqing,et al.On the teleconnection patterns to air temperature in the Tianshan Mountain, China[J].Mountain Research,2016,(2):679.[doi:10.16089/j.cnki.1008-2786.000174]
[10]王 涛,白红英*.秦岭山地植被NDVI对气候变化与人类活动的响应[J].山地学报,2017,(06):778.[doi:10.16089/j.cnki.1008-2786.000278]
 WANG Tao,,et al.Variation of Vegetation NDVI in Response to Climate Changesand Human Activities in Qinling Mountains[J].Mountain Research,2017,(2):778.[doi:10.16089/j.cnki.1008-2786.000278]

备注/Memo

备注/Memo:
收稿日期(Received date):2019 -11-10; 改回日期(Accepted date):2021-03-02
基金项目(Foundation item):国家重点研发计划子课题(2016YFC0500204)[National Key R&D Program of China(2016YFC0500204)]
作者简介(Biography):李叶(1997-),女,黑龙江伊春人,硕士研究生,主要研究方向:地理空间建模与应用。[LI Ye(1997-), female, born in Yichun, Hei Longjiang province, M.Sc. candidate, research on geographical modeling building]E-mail: 676954779@qq.com
*通讯作者(Corresponding author):刘兆礼(1964-),男, 博士,教授,主要研究方向:生态遥感尺度变换。[LIU Zhaoli(1964-), male, Ph.D., professor, specialized in ecological remote sensing scale transformation]E-mail: liuzhaoli@neigae.ac.cn
更新日期/Last Update: 2021-03-30