参考文献/References:
[1] ANDERSON M C, NORMAN J M, KUSTAS W P, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales [J]. Remote Sensing of Environment, 2008(112): 4227-4241. DOI: 10.1016/j.rse.2008.07.009
[2] KALMA J D, MCVICAR T R, MCCABE M F. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data [J]. Surveys in Geophysics, 2008, 29(4): 421-469. DOI: 10.1007/s10712-008-9037-z
[3] WU Yuwei, WANG Ninglian, HE Jianqiao, et al. Estimating mountain glacier surface temperatures from Landsat-ETM + thermal infrared data: a case study of Qiyi glacier, China [J]. Remote Sensing of Environment, 2015, 163:286-295. DOI: 10.1016/j.rse.2015.03.026
[4] ZHANG Renhua, TIAN Jing, SU Hongbo, et al. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval [J]. Sensors, 2008, 8(10): 6165-6187. DOI: 10.3390/s8106165
[5] DOUSSET B, GOURMELON F. Satellite multi-sensor data analysis of urban surface temperatures and landcover [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 58(1-2): 43-54. DOI: 10.1016/S0924-2716(03)00016-9
[6] WENG Qihao. Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4): 335-344. DOI: 10.1016/j.isprsjprs.2009.03.007
[7] HANSEN J, RUEDY R, SATO M, et al. Global surface temperature change [J]. Reviews of Geophysics, 2010, 48(4): RG4004. DOI: 10.1029/2010RG000345
[8] HOLDERNESS T, BARR S, DAWSON R, et al. An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric [J]. International Journal of Remote Sensing, 2013, 34(3): 864-884. DOI: 10.1080/01431161.2012.714505
[9] 施雅风,黄茂桓, 任炳辉. 中国冰川概论[M]. 北京: 科学出版社, 1988: 105-119. [SHI Yafeng, HUANG Maohuan, REN Binghui. An introduction to the glaciers in China [M]. Beijing: Science Press, 1988: 105-119]
[10] 黄茂桓. 我国冰川温度研究40年[J]. 冰川冻土, 1999, 21(3): 193-199. [HUANG Maohuan. Forty year's study of glacier temperature in China [J]. Journal of Glaciology and Geocryology, 1999, 21(3): 193-199]
[11] 王宁练, 贺建桥, 吴红波, 等. 青藏高原昆仑山求勉雷克塔格冰川春季表面温度空间变化特征及其影响因素[J]. 冰川冻土, 2013, 35(5):1088-1094. [WANG Ninglian, HE Jianqiao, WU Hongbo, et al. Spatial variation in spring surface temperature of the Qiumianleiketage Glacier in the Kunlun Mountains, Tibetan Plateau, and their influencing factors [J], Journal of Glaciology and Geocryology, 2013, 35(5):1088-1094] DOI: 10.7522/j.issn.1000-0240.2013.0122
[12] LI Zhaoliang, TANG Bohui, WU Hua, et al. Satellite-derived land surface temperature: current status and perspectives [J]. Remote Sensing of Environment, 2013, 131: 14-37. DOI: 10.1016/j.rse.2012.12.008
[13] QIN Zhihao, KARNIELI A, BERLINER P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region [J]. International Journal of Remote Sensing, 2001, 22(18): 3719-3746. DOI: 10.1080/01431160010006971
[14] JIMéNEZ-MuñOZ J C, SOBRINO J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data [J]. Journal of Geophysical Research, 2003, 108(D22): 4688. DOI: 10.1029/2003JD003480
[15] ROY D P, WULDER M A, LOVELAND T R, et al. Landsat-8: science and product vision for terrestrial global change research [J]. Remote Sensing of Environment, 2014, 145: 154-172. DOI: 10.1016/j.rse.2014.02.001
[16] JIMENEZ-MUNOZ J C, SOBRINO J A, SKOKOVIC D, et al. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1840-1843. DOI: 10.1109/LGRS.2014.2312032
[17] WANG Fei, QIN Zhihao, SONG Caiying, et al. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data [J]. Remote Sensing, 2015, 7(4): 4268-4289. DOI: 10.3390/rs70404268
[18] CRISTOBAL J, JIMENEZ-MUNOZ J C, PRAKASH A, et al. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band [J]. Remote Sensing, 2018, 10(3): 431. DOI: 10.3390/rs10030431
[19] 孟翔晨, 历华, 杜永明, 等. Landsat 8地表温度反演及验证——以黑河流域为例[J]. 遥感学报, 2018, 22(5): 857-871. [MENG Xiangchen, LI Hua, DU Yongming, et al. Retrieval and validation of the land surface temperature derived from Landsat 8 data: a case study of the Heihe River Basin [J]. Journal of Remote Sensing, 2018, 22(5): 857-871] DOI: 10.11834/jrs.20187411
[20] ROZENITEIN O, QIN Zhihao, DERIMIAN Y, et al. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm [J]. Sensors, 2014, 14(4): 5768-5780. DOI: 10.3390/s140405768
[21] YU Xiaolei, GUO Xulin, WU Zhaocong. Land surface temperature retrieval from Landsat 8 TIRS—comparison between radiative transfer equation-based method, split window algorithm and single channel method [J]. Remote Sensing, 2014, 6(10): 9829-9852. DOI: 10.3390/rs6109829
[22] 宋挺, 段峥, 刘军志, 等. Landsat 8 数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3): 451-464. [SONG Ting, DUAN Zheng, LIU Junzhi, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite [J]. Journal of Remote Sensing, 2015, 19(3): 451-464] DOI: 10.11834/jrs.20154180
[23] GARCIA-SANTOS V, CUXART J, MARTINEZ-VILLGARASA D, et al. Comparison of three methods for estimating land surface temperature from Landsat 8-TIRS sensor data [J]. Remote Sensing, 2018, 10(9): 1450. DOI: 10.3390/rs10091450
[24] WANG Lei, LU Yao, YAO Yunlong. Comparison of three algorithms for the retrieval of land surface temperature from Landsat 8 images [J]. Sensors, 2019, 19(22): 5049. DOI: 10.3390/s19225049
[25] 赵伟,李爱农,张正健,等.基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J].遥感技术与应用,2016, 31(1): 63-73. [ZHAO Wei, LI Ainong, ZHANG Zhengjian, et al. A study on land surface temperature terrain effect over mountainous area based on Landsat 8 thermal infrared data [J]. Remote Sensing Technology and Application, 2016, 31(1): 63-73] DOI: 10.11873/j.issn.1004-0323.2016.1.0063
[26] BARSI J A, SCHOTT J R, HOOK S J, et al. Landsat-8 Thermal Infrared Sensor(TIRS)vicarious radiometric calibration [J]. Remote Sensing, 2014, 6(11): 11607-11626. DOI: 10.3390/rs61111607
[27] 徐涵秋. 新型Landsat 8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015, 58(3): 741-747. [XU Hanqiu. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite [J]. Chinese Journal of Geophysics, 2015, 58(3): 741-747] DOI: 10.6038/cjg20150304
[28] 徐涵秋, 林中立, 潘卫华. 单通道算法地表温度反演的若干问题讨论—以Landsat系列数据为例[J].武汉大学学报(信息科学版), 2015, 40(4): 487-492. [XU Hanqiu, LIN Zhongli, PAN Weihua. Some issues in land surface temperature retrieval of Landsat thermal data with the single-channel algorithm [J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 487-492] DOI: 10.13203/j.whugis20130733
[29] 徐涵秋. Landsat 8热红外数据定标参数的变化及其对地表温度反演的影响[J]. 遥感学报, 2016, 20(2): 229-235. [XU Hanqiu. Change of Landsat 8 TIRS calibration parameters and its effect on land surface temperature retrieval [J]. Journal of Remote Sensing, 2016, 20(2): 229-235] DOI: 10.11834/jrs.20165165
[30] 中国科学院高山冰雪利用研究队. 祁连山现代冰川考察报告[M]. 北京: 科学出版社,1958: 52-56. [Investigation team on utilization of snow and ice resources in mountain regions, Chinese Academy of Sciences. Investigations report of glaciers in the Qilian Mountains [M]. Beijing: Science Press, 1958: 52-56]
[31] WU Xuejiao, HE Jianqiao, JIANG Xi, et al. Analysis of surface energy and mass balance in the accumulation zone of Qiyi Glacier, Tibetan Plateau in an ablation season [J]. Environmental Earth Sciences, 2016, 75(9):785. DOI: 10.1007/s12665-016-5591-8
[32] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663-667. DOI: 10.1038/NCLIMATE1580
[33] 王宁练, 贺建桥, 蒲健辰, 等. 近50年来祁连山七一冰川平衡线高度变化研究[J]. 科学通报, 2010, 55(32): 3107-3115. [WANG Ninglian, HE Jianqiao, PU Jianchen, et al. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years [J]. Chinese Science Bulletin, 2010, 55(32): 3107-3115] DOI: 10.1017/S0004972710001772
[34] 王坤, 井哲帆, 吴玉伟, 等. 祁连山七一冰川表面运动特征最新观测研究[J]. 冰川冻土, 2014, 36(3): 537-545. [WANG Kun, JING Zhefan, WU Yuwei, et al. Latest survey and study of surface flow features of the Qiyi Glacier in the Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2014, 36(3): 537-545] DOI: 10.7522/j.issn.1000-0240.2014.0064
[35] GAO Bocai, KAUFMAN Y J. MODIS atmosphere L2 water vapor product [EB/OL]. http://dx.doi.org/10.5067/MODIS/MOD05_L2.006. html, 2021-1-6.
[36] CHEN Feng, ZHAO Xiaofeng, YE Hong, et al. Retrieving land surface temperature from Landsat TM using different atmospheric products as ancillary data [C]. Proceedings of 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, 2011: 421-426. DOI: 10.1109/ICSDM.2011.5969079
[37] PRATA A J. Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer 1. theory [J]. Journal of Geophysical Research, 1993, 98(D9): 16689-16702. DOI: 10.1029/93JD01206
[38] SNYDER W C, WAN Z, ZHANG Y, et al. Classification-based emissivity for land surface temperature measurement from space [J]. International Journal of Remote Sensing, 1998, 19(14): 2753-2774. DOI: 10.1080/014311698214497
[39] SOBRINO J A, RAISSOUNI N. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco [J]. International Journal of Remote Sensing, 2000, 21(2): 353-366. DOI: 10.1080/014311600210876
[40] HORI M, AOKI T, TANIKAWA T, et al. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window [J]. Applied Optics, 2013, 52(30): 7243-7255. DOI: 10.1364/AO.52.007243
[41] FRENIERRE J L, MARK B G. A review of methods for estimating the contribution of glacial meltwater to total watershed discharge [J]. Progress in Physical Geography, 2014, 38(2): 173-200. DOI: 10.1177/0309133313516161
[42] 陆品廷. 基于Landsat 8数据的青藏高原地区地表温度反演研究[D].南京: 南京信息工程大学, 2018. [LU Pinyan. Study on land surface temperature retrieval of Tibetan Plateau from Landsat 8 data [D]. Nanjing: Nanjing University of Information Science and Technology, 2018] DOI: CNKI:CDMD:2.1018.130709