[1]韩 珍,陈晓燕*,李彦海,等.近饱和与非饱和土壤细沟水流输沙能力的对比研究[J].山地学报,2020,(6):841-850.[doi:10.16089/j.cnki.1008-2786.000560]
 HAN Zhen,CHEN Xiaoyan*,LI Yanhai,et al.Comparison of Sediment Transport Capacity along Rills of Partially Saturated and Non-Saturated Soils[J].Mountain Research,2020,(6):841-850.[doi:10.16089/j.cnki.1008-2786.000560]
点击复制

近饱和与非饱和土壤细沟水流输沙能力的对比研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第6期
页码:
841-850
栏目:
山地环境
出版日期:
2020-12-25

文章信息/Info

Title:
Comparison of Sediment Transport Capacity along Rills of Partially Saturated and Non-Saturated Soils
文章编号:
1008-2786-(2020)6-841-10
作者:
韩 珍陈晓燕*李彦海陈仕奇顾小杰
西南大学 资源环境学院,重庆 400715
Author(s):
HAN Zhen CHEN Xiaoyan* LI Yanhai CHEN Shiqi GU Xiaojie
College of Resources and Environment, Southwest University, Chongqing400716, China
关键词:
泥沙输移 侵蚀敏感性 水流功率 细沟侵蚀 坡耕地
Keywords:
sediment transport erosion sensitivity stream power rill erosion slope cropland
分类号:
S157.1
DOI:
10.16089/j.cnki.1008-2786.000560
文献标志码:
A
摘要:
近饱和与非饱和土壤在水文、力学、结构等方面存在的差异可能会造成泥沙输移行为的不同。研究通过细沟模拟试验测定了近饱和与非饱和土壤在2、4及8 L·min-1三个流量和5°、10°、15°及20°四种坡度工况条件下的侵蚀过程,根据细沟剥蚀率与水流含沙量之间的关系解析得到相应的水流输沙能力,并采用试验验证解析值的合理性。通过方程模型量化近饱和与非饱和土壤水流输沙能力与水流功率之间的关系,在此基础上对比分析了二者水流输沙能力之间的差异。试验结果表明,解析得到的水流输沙能力与相同工况条件下的实测水流输沙能力间的差异为2%~6%。对数方程可以很好地表达近饱和与非饱和土壤水流输沙能力与水流功率之间的关系。各试验条件下近饱和土壤水流输沙能力是非饱和的1.08~2.35倍,表明土壤处于近饱和状态下更易发生侵蚀搬运。研究结果将有助于理解近饱和状态下土壤侵蚀水动力学机理,为完善土壤侵蚀物理模型提供理论依据。
Abstract:
The behaviors of partially saturated and non-saturated soils differ greatly in terms of their hydrology, mechanics, and structures, which may cause many differences during the process of sediment transport, and are therefore worthy of further in-depth study. In this study, a series of experiments was conducted to determine the sediment concentration of partially saturated and non-saturated soils at four slope gradients(5°, 10°, 15°, and 20°)and three flow discharges(2, 4, and 8 L·min-1). According to the model analysis of detachment rate and sediment concentration, the sediment transport capacity under corresponding hydraulic conditions was determined, and then the correctness of the analytical method was further verified by experiments. The equation model was used to quantify the relationship between sediment transport capacity and stream power. Then, the differences in the sediment transport capacity of partially saturated and non-saturated soils were compared and analyzed. The results showed that the difference between the analytical sediment transport capacity and the measured sediment transport capacity was 2%~6%, which indicated the correctness and rationality of the analytical method. The sediment transport capacity of partially saturated and non-saturated soils showed an increasing trend with an increased slope gradient and flow discharge. The logarithmic equation model can more accurately describe the relationship between the sediment transport capacity and the stream power. The sediment transport capacity of partially saturated soil was 1.08~2.35 times that of non-saturated soil, which indicated that the soil in partially saturation was more prone to erosion under the same hydraulic conditions. The research will help to understand the hydrodynamic mechanism of soil erosion under partially saturation and provide theoretical basis for improving the physical model of erosion.

参考文献/References:

[1] BERTOLINO AVFA, FERNANDES NF, MIRANDA JPL, et al. Effects of Plough Pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau[J]. Journal of Hydrology, 2010, 393:94-104.
[2] ZHANG J, LEI TW, CHEN TQ. Impact of preferential and lateral flows of water on single-ring measured infiltration process and its analysis[J]. Soil Science Society of America Journal, 2016, 80(4): 859-869.
[3]黄永超, 陈晓燕, 韩珍, 等. 紫色土耕层土壤基质与优先流入渗的定量计算[J]. 中国水土保持科学, 2018, 16(5): 30-39. [HUANG Yongchao, CHEN Xiaoyan, HAN Zhen, et al. Quantitative calculation of matrix infiltration and preferential infiltration in the tillage layer of purple soil [J]. Science of Soil and Water Conservation, 2018, 16(5): 30-39]
[4] HUANG YH, CHEN XY, LI FH, et al. Velocity of water flow along saturated loess slopes under erosion effects[J]. Journal of Hydrology, 2018, 561: 304-311.
[5] 邢行, 陈晓燕, 韩珍, 等. 饱和与非饱和黄绵土细沟径流水动力学特征及侵蚀阻力对比[J]. 水土保持学报, 2018, 156(3): 92-97. [XING Hang, CHEN Xiaoyan, HAN Zhen, et al. Comparation of hydrodynamic characteristics and flow resistance under rill erosion between saturated and unsaturated Loess soil[J]. Journal of Soil and Water Conservation, 2018, 156(3): 92-97]
[6] LEI TW, ZHANG QW, ZHAO J, et al. A laboratory study of sediment transport capacity in the dynamic process of rill erosion[J]. Transactions of the ASAE, 2001, 44(6): 1537-1542.
[7] 雷廷武, 张晴雯, 闫丽娟. 细沟侵蚀物理模型[M]. 北京: 科学出版社, 2009: 18. [LEI Tingwu, ZHANG Qingwen, YAN Lijuan. Physical model of rill erosion [M]. Beijing, Science Press, 2009: 18]
[8] FORSTER GR, MEYER LD. Transport of soil particles by shallow flow[J]. Transactions of the ASAE, 1972, 15(1): 99-102.
[9] JULIEN P Y, SIMONS D B. Sediment transport capacity of overland flow[J]. Transactions of the ASAE, 1985, 28(3): 755-0762.
[10] NEARING MA, NORTON LD, BULGAKOV DA, et al. Hydraulics and erosion in eroding rills[J]. Water Resources Research, 1997, 33(4): 865-876.
[11] LEI TW, NEARING MA, HAGHIGHI K, et al. Rill erosion and morphological evolution: A simulation model [J]. Water Resources Research, 1998, 34(11): 3157-3168.
[12] 周陈燕. 土壤细沟侵蚀输沙能力与剥蚀能力测量方法研究[D]. 中国农业大学, 2016: 8-9. [ZHOU Chenyan. Research on measurement methods of sediment transport capacity and detachment capacity of rill erosion [D]. China Agricultural University, 2016: 8-9].
[13] GAO XF, LI FH, CHEN C, et al. Effects of thawed depth on the sediment transport capacity by melt water on partially thawed black soil slope[J]. Land Degradation & Development, 2019, 30(1): 84-93.
[14] 张乐涛, 李占斌, 肖俊波, 等. 黄土丘陵沟壑区典型小流域不同洪水类型侵蚀输沙效应[J]. 农业机械学报, 2016, 47(8): 109-116. [ZHANG Letao, LI Zhanbin, XIAO Junbo, et al. Effects of different flood regimes on soil erosion and sediment transport in typical small watershed of loess hilly-gully region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8):109-116].
[15] KABIR MA, DUTTA D, HIRONAKA S. Evaluation of sediment transport capacity equations using basin scale process-based sediment dynamic modelling approach[J]. Water Resources Management, 2015, 29(4): 1097-1116.
[16] JIANG FS, GAO PY, SI XJ, et al. Modelling the sediment transport capacity of flows in steep nonerodible rills[J]. Hydrological Processes, 2018, 32(26): 3852-3865.
[17] 韩珍, 王小燕, 李馨欣. 土石混合紫色土坡面水文过程的实验研究[J]. 山地学报, 2017, 35(4): 451-458. [HAN Zhen, WANG Xiaoyan, LI Xinxin. Effects of rock fragment cover on hydrological processes in purple soils[J]. Mountain Research, 2017, 35(4):451-458.]
[18] 李彦海, 陈晓燕, 韩珍, 等.紫色土细沟水流输沙能力对近地表水流作用的响应[J/OL]. 土壤学报: 1-10[2020-10-20].http://kns.cnki.net/kcms/detail/32.1119.p.20200326.1204.002.html.[LI Yanhai, CHEN Xiaoyan, HAN Zhen.Response of flow in rills to subsurface water flow in sediment transport capacity on purple soil[J]. Acta Pedologica Sinica: 1-10]
[19] 邢行. 饱和与非饱和黄绵土细沟侵蚀特征对比研究[D]. 重庆: 西南大学, 2019: 20. [XING Hang. Comparative study of rill erosion characteristics between saturated and unsaturated Loess soil [D]. Chongqing: Southwest University, 2019: 20.]
[20] 张晴雯. 细沟水蚀动力过程试验研究[D]. 杨凌: 西北农林科技大学, 2001: 22-38. [ZHANG Qingwen. Study on the dynamic process of rill erosion [D]. Yangling: Northwest Agriculture & Forestry University, 2001: 22-38]
[21] 师宏强, 刘刚, 谷举, 等. 不同坡度坡面径流输沙能力对集中流流量变化的响应[J]. 水土保持学报, 2018, 32(1): 25-31. [SHI Hongqiang, LIU Gang, GU Ju, et al. Response of sediment transport capacity under different slope to the change of concentrate flow rate[J]. Journal of Soil and Water Conservation, 2018, 32(1): 25-31]
[22] 高鹏宇, 詹振芝, 蒋芳市, 等. 坡度和流量对崩积体坡面细沟水流输沙能力的影响[J].水土保持学报, 2018, 32(3): 68-73. [GAO Pengyu, ZHAN Zhenzhi, JIANG Fangshi, et al. Effects of slope and flow on sediment transport capacity of the colluvial deposit for rill flow in Benggang[J]. Journal of Soil and Water Conservation, 2018, 32(3):68-73]
[23] 赵宇, 陈晓燕, 米宏星,等. 基于体积法对黄土细沟侵蚀沿程分布模拟的研究[J]. 土壤学报, 2014, 51(6): 1234-1241. [ZHAO Yu, CHEN Xiaoyan, MI Hongxing, et al. A volumetric method based study on distribution of erosion along rills on loess slope[J]. Acta Pedologica Sinica, 2014, 51(6): 1234-1241]
[24] 唐邦兴. 中国泥石流[M]. 北京:商务印书馆, 2000: 17. [TANG Bangxing. Debris flow in China [M]. Beijing: Commercial press, 2000: 17]
[25] CHEN C, BAN Y, WANG X, et al. Measuring flow velocity on frozen and non-frozen slopes of black soil through leading edge method[J]. International Soil & Water Conservation Research, 2017, 5(3): 180-189.
[26] ZHANG GH, LIU YM, HAN YF, et al. Sediment Transport and Soil Detachment on Steep Slopes: I. Transport Capacity Estimation[J]. Soil Science Society of America Journal, 2009, 73(4): 1291-1297.
[27] AZIZ NM, SCOTT DE. Experiments on sediment transport in shallow flows in high-gradient channels[J]. Hydrological Sciences Journal, 1989, 34(4): 465-478.
[28] 高晨烨, 张宽地, 杨明义. 基于无量纲水流强度指标的坡面流输沙能力计算方法[J]. 农业工程学报, 2018, 34(17): 134-142. [GAO Chenye, ZHANG Kuandi, YANG Mingyi. Overland flow sediment transport capacity calculation method based on non-dimensional flow intensity index[J]. Transactions of the CSAE, 2018, 34(17): 134-142]
[29] 王晨沣, 马超, 王玉杰, 等. 水力梯度影响下WEPP模型估计细沟侵蚀参数的可行性分析[J]. 农业工程学报, 2017, 33(8): 126-133. [WANG Chenfeng, MA Chao, WANG Yujie, et al. Feasibility analysis of parameters estimation for rill erosion in WEPP model under different hydraulic gradients[J]. Transactions of the CSAE, 2017, 33(8): 126-133.]
[30] ROMENKENS MJ, HELMING K, PRASAD SN. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes[J]. Catena, 2002, 46: 103-123.
[31] SIMON A, COLLISON AJC. Pore-water pressure effects on the detachment of cohesive streambeds: Seepage forces and matric suction[J]. Earth Surface Processes and Landforms, 2001, 26(13): 1421-1442.
[32] NOUWAKPO SK, HUANG CH, BOWLING L, et al. Impact of vertical hydraulic gradient on rill erodibility and critical shear stress[J]. Soil Science Society of America Journal, 2010, 74(6): 1914-1921.
[33] OSIPOV VI. Physicochemical theory of effective stress in soils [M]. Berlin: Springer, 2015: 6-10.

相似文献/References:

[1]文安邦,张信宝,张一云,等.黄土峁坡耕地土壤侵蚀与泥沙输移[J].山地学报,1995,(02):85.
[2]王协康,方铎,曹叔尤,等.坡面非均匀沙输移机理实验方法[J].山地学报,1999,(03):39.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-04-20; 改回日期(Accepted date):2020-11-17
基金项目(Foundation item):国家自然科学基金(41571265); 重庆市社会民生类重点研发项目(cstc2018jscx-mszdX0061)。[National Natural Science Foundation of China(41571265); Key Research and Development Project of Social Livelihood in Chongqing(cstc2018jscx-mszdX0061)]
作者简介(Biography):韩珍(1994-),女,陕西铜川人,博士研究生,主要研究方向:土壤侵蚀及流域治理。[HAN Zhen(1994-), female, born in Shan xi, M.Sc. Ph. D. candidate,research on soil erosion] E-mail: m13658372800@163.com
*通讯作者(Corresponding author):陈晓燕(1971-),女,博士,研究员,主要研究方向:土壤侵蚀及流域治理。[CHEN Xiaoyan(1971-), female, Ph.D., professor, research on soil erosion]E-mail: c400716@126.com
更新日期/Last Update: 2020-11-30