[1]刘 颖,等.干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比[J].山地学报,2020,(5):668-678.[doi:10.16089/j.cnki.1008-2786.000544]
 LIU Ying,HE Jingwen,et al.Nutrients(C, N, P)Contents and Stoichiometric Ratios of Fine Root,Coarse Root and Leaf in Dominant Shrubs in Dry-hot Valley[J].Mountain Research,2020,(5):668-678.[doi:10.16089/j.cnki.1008-2786.000544]
点击复制

干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第5期
页码:
668-678
栏目:
山地环境
出版日期:
2020-11-10

文章信息/Info

Title:
Nutrients(C, N, P)Contents and Stoichiometric Ratios of Fine Root,Coarse Root and Leaf in Dominant Shrubs in Dry-hot Valley
文章编号:
1008-2786-(2020)5-668-11
作者:
刘 颖1 2贺静雯1 2余 杭1 2林勇明1 2*王道杰3
1.福建农林大学 林学院,福州 350002; 2.中国科学院山地灾害与地表过程重点实验室,成都 610041; 3.中国科学院、水利部成都山地灾害与环境研究所,成都 610041
Author(s):
LIU Ying1 2 HE Jingwen1 2 YU Hang1 2 LIN Yongming 1 2* WANG Daojie3
1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2. Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences, Chengdu 610041, China; 3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
干热河谷 灌木 根系 叶片 C、N、P含量 化学计量比 蒋家沟流域
Keywords:
dry-hot valley shrub root leaf C N and P content stoichiometric ratio Jiangjia Gully
分类号:
Q948
DOI:
10.16089/j.cnki.1008-2786.000544
文献标志码:
A
摘要:
分析生态脆弱区植物根系与叶片的养分含量特征,可认识植物生长发育的养分限制状况以及根系与叶片间的协同作用,并确定植物在恶劣环境条件下的适应性及生存策略。本文以典型生态脆弱区——干热河谷常见灌木植物马桑、坡柳和苦刺为研究对象,对其根系和叶片养分含量、化学计量比特征以及相互之间的关系进行研究。结果表明,马桑、坡柳粗根C含量显著高于细根(P<0.05),马桑细根P含量显著高于粗根(P<0.05)。细根、粗根养分含量的不同表明细根与粗根的生理生态功能具有较大差异。马桑和坡柳粗根的C:N、C:P均显著高于细根(P<0.05),坡柳细根和粗根的C:N均显著高于马桑、苦刺(P<0.05)。根据N:P判断,马桑细根(10.61)、粗根(11.42)生长均受到N的限制; 坡柳细根(7.87)、粗根(6.00)生长受N的限制更为严重; 苦刺细根(18.43)、粗根(16.34)生长均受P的限制。细根、粗根养分受限一致,表明细根和粗根的养分分配具出一定的协同性。除苦刺C外,灌木C、N、P含量均表现为叶片显著高于细根、粗根(P<0.05),表明叶片具有更高的养分含量。叶片N、P含量表现为苦刺显著高于马桑、坡柳(P<0.05),说明苦刺养分吸收能力更强。三种灌木N:P均表现为叶片>根系(P<0.05),马桑、坡柳、苦刺叶片N:P分别为40.05、35.34、45.26,三种灌木叶片的生长均受到P的限制。细根、粗根C含量与叶片无显著相关性,说明根系与叶片的C来源不同。根系N、P含量与叶片均呈显著正相关,说明叶片N、P主要来源于根系吸收的土壤养分,叶片与细根N、P相关性更强。上述结果表明植物体在生长代谢过程中具有整体性,植物的地上与地下营养器官在养分的分配过程中具有协同作用,细根与地上部分的协同作用比粗根强。
Abstract:
Analyzing the nutrient content characteristics of plant roots and leaves in ecologically fragile area is helpful to understand the nutrient limitation of plant growth and the synergy between root and leaf, and to determine the plant's adaptability and survival strategies under harsh environmental conditions. In this paper, three dominant shrub species, including Coriaria sinica, Dodonaea viscose and Sophora davidii in a typical ecologically fragile area-dry and hot valley, were selected to study nutrient contents, stoichiometric ratios and their relationships of root and leaf. The C content of coarse root of C. sinica and D. viscose were significantly higher than that of fine root. The P contents of fine root of C. sinica was significantly higher than that of coarse root. The difference in nutrient content between fine root and coarse root indicated that the physiological and ecological functions between fine root and coarse root were quite different. C:N and C:P of the coarse root of C. sinica and D. viscose were significantly higher than those of fine root. The C:N of fine root and coarse root of D. viscose were significantly higher than those of C. sinica and S. davidii. The growth of fine root and coarse root in C. sinica and D. viscose were limited by N, while that in S. davidii was limited by P. Fine root and coarse root nutrients indicated a coordination in nutrient restriction. Except for S. davidii C, the contents of C, N and P in leaf of three shrubs were significantly higher than those in fine root and coarse root, indicating that leaf had higher nutrient content. The N and P in leaf of S. davidii were significantly higher than those in C. sinica and D. viscose, indicating that the nutrient absorption capacity of S. davidii was stronger. The ratio of N:P in leaf(with the value of 40.05 in C. sinica, 35.34 in D. viscose and 45.26 in S. davidii)was significantly higher than that in root, indicating that the growth of the three species' leaves were limited by P. There was no significant correlation between C content of fine root, coarse root and that of leaf, indicating that the source of C of root and leaf were different. There were significant positive correlations between N, P of root and those of leaf, indicating that the main source of N, P in leaf was derived from the root system to absorb soil nutrients, the correlation about N, P between leaf and fine root were stronger. The research results indicated that the plants were integrated in the process of growth and metabolism. The aboveground and underground organs of plants had a synergistic effect in the process of nutrient distribution, the synergy between fine root and aboveground part was stronger than that between coarse root and aboveground part.

参考文献/References:

[1] 许旸.中国热带27个阔叶树种不同根序细根的形态特征、解剖结构和碳氮研究[D].哈尔滨:东北林业大学,2011:1-55.[XU Yang. Fine root morphology, anatomy and tissue nitrogen and carbon of the first five order roots in twenty-seven Chinese tropical hardwood tree species[D]. Harbin: Northeast Forestry University, 2011: 1-55]
[2] GILL R A, JACKSON R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147(1): 13-31.
[3] 吴盼婷,王江民,沈佳逾,等.不同菊花品种根系,地上部和叶片相关指标分析及抗逆性评价[J].植物资源与环境学报,2017,26(2):46-54.[WU Panting, WANG Jiangmin, SHEN Jiayu, et al. Analyses on related indexes of root, above-ground part and leaf of different cultivars of Chrysanthemum morifolium and stress resistance evaluation[J]. Journal of Plant Resources and Environment, 2017, 26(2): 46-54]
[4] 胡士达.不同林龄闽楠人工林生态化学计量特征研究[D].长沙:中南林业科技大学,2017:1-51.[HU Shida. Studies on ecological stoichiometry of Phoebe plantation in different ages[D]. Changsha: Central South University of Forestry and Technology, 2017: 1-51]
[5] 施宇,温仲明,龚时慧.黄土丘陵区植物叶片与细根功能性状关系及其变化[J].生态学报,2011,31(22):6805-6814.[SHI Yu, WEN Zhongming, GONG Shihui. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22): 6805-6814]
[6] 印婧婧,郭大立,何思源,等.内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J].北京大学学报(自然科学版),2009,45(3):519-527.[YIN Jingjing, GUO Dali, HE Siyuan, et al. Non-Structural carbohydrate, N, and P allocation patterns of two temperate tree species in a Semi-Arid region of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 519-527]
[7] 徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J].植物生态学报,2010,34(1):29-38.[XU Bing, CHENG Yuxi, GAN Huijie, et al. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 29-38]
[8] 樊晓勇.祁连山老虎沟优势植物的养分空间变化与生态化学计量学研究[D].兰州:兰州大学,2012:1-46.[FAN Xiaoyong. Spatial variation in nutrient of dominant plant and ecological stoichiometry from Laohu Gou of Qilian Mountain[D]. Lanzhou: Lanzhou University, 2012: 1-46]
[9] 王春雪,何光熊,宋子波,等.元江元谋干热河谷土壤氮磷水平对酸角叶片氮磷含量及光合的影响[J].生态学杂志,2019,38(3):710-718.[WANG Chunxue, HE Guangxiong, SONG Zibo, et al. Effects of soil nitrogen and phosphorus levels on leaf nitrogen and phosphorus contents and photosynthesis of Tamarindus indica L.in Yuanjiang and Yuanmou dry-hot valley[J]. Chinese Journal of Ecology, 2019, 38(3): 710-718]
[10] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Orangnism size, Life history, and N P stoichiometry[J]. Bioscience, 1996, 46(9):674-684.
[11] 林勇明,崔鹏,葛永刚,等.蒋家沟流域景观空间格局变化及其干扰效应的模拟分析[J].中国水土保持科学,2010,8(6):32-40.[LIN Yongming, CUI Peng, GE Yonggang, et al. Simulation analysis of the effects of disturbances on landscape pattern dynamics in Jiangjiagou Watershed[J]. Science of Soil and Water Conservation, 2010, 8(6): 32-40]
[12] 葛娈,黄冬,马焕成,等.干热河谷两种植物的旱生结构特征与其分布规律的关系[J].西部林业科学,2016,45(4):107-113.[GE Luan, HUANG Dong, MA Huancheng, et al. The relationship between xeromorphic structures and distributions of 2 plants in dry-hot valley[J]. Journal of West China Forestry Science, 2016, 45(4): 107-113]
[13] 刘颖,贺静雯,李松阳,等.干热河谷优势灌木种类的根系结构及碳氮磷元素含量特征[J].应用与环境生物学报,2020,26(1):31-39.[LIU Ying, HE Jingwen, LI Songyang, et al. Root structure and element(C, N, P)content characteristics of dominant shrub species in a dry-hot valley[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(1): 31-39]
[14] 陈爱民,邓浩俊,严思维,等.蒋家沟5种植被土壤分形特征与养分关系[J].山地学报,2016,34(3):290-296.[CHEN Aimin, DENG Haojun, YAN Siwei, et al. Fractal features of soil and their relatisn with soil fertility under five vegetation in Jiangjiagou Gully[J]. Mountain Research, 2016, 34(3): 290-296]
[15] 罗清虎,孙凡,崔羽,等.泥石流频发流域失稳性坡面主要植物种间关联性[J].应用与环境生物学报,2018,24(4):689-696.[LUO Qinghu, SUN Fan, CUI Yu, et al. Interspecific association among main plant species in the unstable slope with high-frequency debris flow[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(4): 689-696]
[16] 陈爱民,严思维,林勇明,等.泥石流频发区不同林龄新银合欢土壤抗蚀性评价[J].北京林业大学学报,2016,38(9):62-70.[CHEN Aimin, YAN Siwei, LIN Yongming, et al. Evaluation of soil anti-erodibility at different ages of Leucaena leucocephala forests in the area with high-frequency debris flow[J]. Journal of Beijing Forestry University, 2016, 38(9): 62-70]
[17] 吴积善.云南蒋家沟泥石流观测研究[M].北京:科学出版社,1990:238-239.[WU Jishan. Study on debris flow in Jiangjia Gully, Yunnan Province[M]. Beijing: Science Press, 1990: 238-239]
[18] 崔鹏,王道杰,韦方强.干热河谷生态修复模式及其效应——以中国科学院东川泥石流观测研究站为例[J].中国水土保持科学,2005,3(3):60-64.[CUI Peng, WANG Daojie, WEI Fangqiang. Model and effect of ecological restoration of dry—hot valley: A case study of the CAS Dongchuan Debris Flow Observation Station[J]. Science of Soil and Water Conservation, 2005, 3(3): 60-64]
[19] 陈爱民,邓浩俊,严思维,等.泥石流频发流域物源区坡面不同植被类型土壤质量综合评价[J].应用与环境生物学报,2016,22(2):249-256.[CHEN Aimin, DENG Haojun, YAN Siwei, et al. Comprehensive assessment of soil quality under different vegetation types in the provenance slope of the area of high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(2): 249-256]
[20] 郭灵辉,王道杰,张云红,等.泥石流源区新银合欢林地土壤微团聚体分形特征[J].水土保持学报,2010,24(5):243-247.[GUO Linghui, WANG Daojie, ZHANG Yunhong, et al. Fractal features of soil micro-aggregates under Leucaena leucocephala forest in debris flow source area[J]. Journal of Soil and Water Conservation, 2010, 24(5): 243-247]
[21] 谢贤健,韦方强.泥石流频发区不同盖度草地土壤颗粒的分形特征[J].水土保持学报,2011,25(4):202-206.[XIE Xianjian, WEI Fangqiang. Characteristics of soil particle fractal dimension under different coverage grassland of the area with high-frequency debris flow[J]. Journal of Soil and Water Conservation, 2011, 25(4): 202-206]
[22] 巢林,林晗,吴承祯,等.千年桐(Aleurites montana)人工林细根特征及其与细根N、C含量的关系[J].山地学报,2015,33(1):33-41.[CHAO Lin, LIN Han, WU Chengzhen, et al. Fine root characteristics and relationship among morphology, biomass and tissue N and C contents of Aleurites Montana plantation[J]. Mountain Research, 2015, 33(1): 33-41]
[23] GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3): 450-457.
[24] AKBURAK S, ORAL H V, OZDEMIR E, et al. Temporal variations of biomass, carbon and nitrogen of roots under different tree species[J]. Scandinavian Journal of Forest Research, 2013, 28(1): 8-16.
[25] KALLIOKOSKI T, NYGREN P, SIEVANEN R. Coarse root architecture of three boreal tree species growing in mixed stands[J]. Silva Fennica, 2008, 42(2): 189-210.
[26] MAKKONEN K, HELMISAARI H S. Assessing fine-root biomass and production in a Scots pine stand-comparison of soil core and root ingrowth core methods[J]. Plant and Soil, 1999, 210(1): 43-50.
[27] YANG Yusheng, CHEN Guangshui, LIN Peng, et al. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China[J]. Annals of Forest Science, 2004, 61(7): 617-627.
[28] 郭大力.植物根系:结构、功能及在生态系统物质循环中的地位[G]//国家自然科学基金委员会.第三届现代生态学讲座暨国际学术研讨会论文集.北京:高等教育出版社,2005:92-109.[GUO Dali. Plant roots: structure, function, and the role in C and nutrient cycling[G]// National Natural Science Foundation of China. Proceedings of the Third Lecture on Modern Ecology and International Academic Symposium. Beijing: Higher Education Press, 2005:92-109]
[29] 白永超,侯智霞,王冲,等.大兴安岭笃斯越橘叶片、根系及根系层土壤养分特性研究[J].西北农林科技大学学报(自然科学版),2017,45(7):115-124.[BAI Yongchao, HOU Zhixia, WANG Chong, et al. Nutritional characteristics in leaf, root and root soil of Vaccinium uliginosum in the Greater Xing'an Mountains[J]. Journal of Northwest A&F University(Natural Science Edition), 2017, 45(7): 115-124]
[30] 王政权,郭大立.根系生态学[J].植物生态学报,2008,32(6):1213-1216.[WANG Zhengquan, GUO Dali. Root ecology[J]. Journal of Plant Ecology, 32(6): 1213-1216]
[31] 白尚斌.西南桦、思茅松和北美红杉幼苗对N、P养分的适应机制[D].哈尔滨:东北林业大学,2002:1-126.[BAI Shangbin. Adaptive response of Betula alnoides, Pinus kesiya and Sequoia sempervirens seedlings to N and P nutrients[D]. Harbin: Northeast Forestry University, 2002: 1-126]
[32] WITHINGTON J M, REICH P B, OLEKSYN J, et al. Comparisons of structure and life span in roots and leaves among temperate trees[J]. Ecological Monographs, 2006, 76(3):381-397.
[33] 刘方春,马海林,杜振宇,等.杨树切口处细根碳氮磷化学计量特征对根剪的响应[J].中国农学通报,2019,35(35):45-51.[LIU Fangchun, MA Hailin, DU Zhenyu, et al. Response of C, N and P stoichiometric characteristics of root orders in Poplar Incision to root pruning[J]. Chinese Agricultural Science Bulletin, 2019, 35(35): 45-51]
[34] JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7362-7366.
[35] CHAPIN F S, BLOOM A J, FIELD C B, et al. Plant responses to multiple environmental factors: physiological ecology provides tools for studying how interacting environmental resources control plant growth[J]. Bioscience, 1987,37(1):49-57.
[36] 赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42.[ZHAO Ping, SUN Guchou, PENG Shaolin. Ecophysiological research on nitrogen nutrition of plant[J]. Ecologic Science, 1998, 17(2): 37-42]
[37] COOMES D A, GRUBB P J. Responses of juvenile trees to above and belowground competition in nutrient-starved Amazonian rain forest [J] Ecology,1998,79(3):768-782.
[38] 胡启武,聂兰琴,郑艳明,等.沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响[J].生态学报,2014,34(9):2246-2255.[HU Qiwu, NIE Lanqin, ZHENG Yanming, et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in Pinus elliottii plantation[J]. Acta Ecologica Sinica, 2014, 34(9): 2246-2255]
[39] 罗艳,贡璐,朱美玲,等.塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J].生态学报,2017,37(24):8326-8335.[LUO Yan, GONG Lu, ZHU Meiling, et al. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River desert[J]. Acta Ecologica Sinica, 2017, 37(24): 8326-8335]
[40] LI Yulin, CHEN Jing, WEI Mao, et al. N and P resorption in a pioneer shrub(Artemisia halodendron)inhabiting severely desertified lands of Northern China[J]. Journal of Arid Land, 2014, 6(2): 174-185.
[41] 任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.[REN Shujie, YU Guirui, TAO Bo, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Chinese Journal of Environmental Science, 2007, 28(12): 2665-2673]
[42] 徐露燕.湘潭锰矿区不同年龄栾树林土壤、根系和叶片C、N、P化学计量特征[D].长沙:中南林业科技大学,2014:1-49.[XU Luyan. The C:N:P stoichiometry of root, foliar and soil of different aged koelreuteria paniculate forests in Xiangtan Manganese Mine wasteland[D]. Changsha: Central South University of Forestry and Technology, 2014: 1-49]
[43] YUAN Z Y, CHEN H Y H, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2(344):1-6.

相似文献/References:

[1]陈剑,崔之久,戴福初,等.金沙江奔子栏-达日河段大型泥石流堆积扇的成因机制[J].山地学报,2011,(03):312.
 CHEN Jian,CUI Zhijiu,Dai Fuchu,et al.Genetic Mechanism of the Major Debrisflow Deposits at BenzilanDari Segment, the Upper Jinsha River[J].Mountain Research,2011,(5):312.
[2]吴宁,乔永康.四川省宁南县干热河谷植物区系[J].山地学报,1994,(01):21.
[3]林伟宏,陈克明,刘照光.川西南干热河谷赤按人工林生物量和营养元素含量[J].山地学报,1994,(04):251.
[4]张建平.元谋干热河谷区降水异常灰色灾变预测[J].山地学报,1995,(01):55.
[5]何毓蓉,黄成敏.云南省元谋干热河谷的土壤系统分类[J].山地学报,1995,(02):73.
[6]黄成敏,何毓蓉.云南省元谋干热河谷的土壤抗旱力评价[J].山地学报,1995,(02):79.
[7]张映翠,朱宏业,吴仕荣.金沙江干热河谷土地资源及其开发潜力[J].山地学报,1996,(03):188.
[8]周麟.云南省元谋干热河谷的第四纪植被演化[J].山地学报,1996,(04):224.
[9]杨忠,王道杰,张信宝,等.元谋干热河谷大翼豆引种栽培试验[J].山地学报,1996,(S1):64.
[10]杨忠,张信宝,王道杰,等.金沙江干热河谷植被恢复技术[J].山地学报,1999,(02):57.

备注/Memo

备注/Memo:
收稿日期(Received date):2019-05-13; 改回日期(Accepted date): 2020-07-04
基金项目(Foundation item):国家自然科学基金(41790434); 福建农林大学杰出青年科研人才计划项目(xjq2017016); 中国科学院山地灾害与地表过程重点实验室开放基金(2019)。[ National Natural Science Foundation of China(41790434); Outstanding Young Scientific Research Project of Fujian Agriculture and Forestry University(xjq2017016); Research Fund of Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences(2019)]
作者简介(Biography):刘颖(1995-),女,山东泰安人,硕士生,主要研究方向:自然资源管理。[LIU Ying(1995-), female, born in Tai'an, Shandong province, M. Sc. candidate, research on natural resource management ] E-mail: liuying052820@163.com
*通讯作者(Corresponding author):林勇明(1982-),男,福建福安人,博士,教授,主要研究方向:恢复生态学。[LIN Yongming(1982-), male, born in Fu'an, Fujian province, ph.D., professor, research on restoration ecology ] E-mail: monkey1422@163.com
更新日期/Last Update: 2020-09-30