[1]陈 浩,董廷旭,李 勇,等.涪江上游流域地貌特征及其对断裂活动性的响应[J].山地学报,2020,(4):542-551.[doi:10.16089/j.cnki.1008-2786.000532]
 CHEN Hao,DONG Tingxu,LI Yong,et al.Geomorphological Characteristics and Its Response to Fault Activity in the Upper Reaches of the Fujiang Drainge Basin, China[J].Mountain Research,2020,(4):542-551.[doi:10.16089/j.cnki.1008-2786.000532]
点击复制

涪江上游流域地貌特征及其对断裂活动性的响应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第4期
页码:
542-551
栏目:
山地环境
出版日期:
2020-09-27

文章信息/Info

Title:
Geomorphological Characteristics and Its Response to Fault Activity in the Upper Reaches of the Fujiang Drainge Basin, China
文章编号:
1008-2786-(2020)4-542-10
作者:
陈 浩1董廷旭1李 勇2文星跃3
1. 绵阳师范学院 资源环境工程学院,四川 绵阳 621006; 2. 成都理工大学 油气藏地质及开发工程国家重点实验室,成都 610059; 3. 西华师范大学 国土资源学院,四川 南充 637002
Author(s):
CHEN Hao1DONG Tingxu1LI Yong2WEN Xingyue3
1.College of Resources and environmental engineering, Mian Yang Teachers' College, Mianyang 621000, Sichuan, China; 2.National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China; 3.College of Land and Resources, China West Normal University, Nanchong 637002,Sichuan,China
关键词:
地貌特征 断裂活动性 虎牙断裂 龙门山断裂带 涪江
Keywords:
geomorphological characteristics fault activity Huya fault Longmenshan fault zone Fujiang
分类号:
P942
DOI:
10.16089/j.cnki.1008-2786.000532
文献标志码:
A
摘要:
摘 要:对涪江上游流域地貌特征及其与断裂活动的相关性进行分析,有助于深入理解青藏高原东缘晚新生代以来的地貌演化过程,也可为该区域构造活动和河流发育历史研究提供参考依据。基于经空间叠加处理的海拔高程数据和地势起伏度数据,在涪江上游流域划分出15种地貌形态组合,在此基础上结合区域断裂活动状况,从研究区地貌类型、海拔高程、地势起伏度、干流下切深度、河道水平扭错等方面探讨流域地貌特征对断裂活动性的响应,结果表明:(1)虎牙断裂和龙门山断裂带逆冲活动驱动区域性间隙抬升使中海拔地貌区成为涪江上游流域地貌类型的主体;(2)虎牙断裂逆冲作用导致位于上盘的西侧块体具有更高的隆升幅度和海拔高程,并加剧了外营力侵蚀,形成了相对较高的地势起伏形态; 龙门山断裂带三条主干断裂的上盘叠瓦式向上推移,使虎牙断裂东侧区域海拔高程和地势起伏度均自北向南逐级降低;(3)涪江上游流域一系列逆断层的差异活动导致位于断裂上盘区域的河道下切深度、下切速率总体上大于下盘区域。涪江干流对流经区域地表的切割,内、外营力的贡献比值大致为1.95:1;(4)横跨断裂的涪江河道因断裂平移走滑而沿断裂走向发生同步弯曲,龙门山断裂带的区域性右旋作用使涪江干流及其支流的流向在龙门山地区发生系统性转变。
Abstract:
Analysis of geomorphic characteristics and its correlation with fault activity is helpful to understand the geomorphic evolution process of the eastern margin of the Qinghai-Tibet plateau since late Cenozoic in the upper reaches of the Fujiang river. It can also provide reference material for tectonic activity and river evolution history in this area. In this study, the upper reaches of the Fujiang river basin were divided into 15 geomorphic types based on elevation data and relief data, geomorphological characteristics and its response to fault activity were discussed combined with regional fracture activity from the aspects of geomorphologic type, elevation, relief amplitude, incision depth, river channel horizontal dislocation and so on. The results showed that thrust activity of the Huya fault and the Longmenshan fault zone drived regional uplift for a long time, so that middle-elevation landform area became the main landform type in the upper reaches of the Fujiang river. As a result of the thrusting effect of Huya fault, higher uplift amplitude and elevation were generated on the western block of hanging wall, the exogenous erosion was aggravated, and relatively higher topographic relief was formed.The imbricated thrusting of the hanging wall of the Longmenshan fault zone led to the decrease of elevation and relief from north to south in the region. As a result of differential activities of thrust faults, the depth and rate of river incision in the hanging wall were generally greater than that in the footwall. The effect proportion of endogenous forces and exogenous forces to erosion process was about 1.95:1. Due to the translational strike-slip of the fault, the Fujiang river course was curved synchronously along the faults. The regional dextral action of the Longmenshan fault zone made the flow direction of the main stream of the Fujiang river and its tributaries change systematically in the Longmenshan area.

参考文献/References:

[1] 谢小平, 白毛伟, 陈芝聪, 等. 龙门山北东段山前断裂第四纪构造活动性与构造地貌特征[J]. 第四纪研究, 2018, 38(1): 247-260. [XIE Xiaoping, BAI Maowei, CHEN Zhicong, et al. Quaternary tectonic activity and tectono-geomorphic in the northeastern Longmen mountains foreland faults zone[J]. Quaternary Sciences, 2018, 38(1): 247-260]
[2] 贾营营, 付碧宏, 王岩, 等. 青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应[J]. 第四纪研究, 2010, 30(4): 825-836. [JIA Yingying, FU Bihong, WANG Yan, et al. Late cenozoic tectono-geomorphic growth and drainage response in the Longmenshan fault zone, east margin of Tibet[J]. Quaternary Sciences, 2010, 30(4): 825-836]
[3] WANG Xianyan, VANDENBERGHE J, LU Huayu, et al. Climatic and tectonic controls on the fluvial morphology of the northeastern Tibetan plateau(China)[J]. Journal of Geographical Sciences, 2017, 27: 1325-1340.
[4] ZHANG Huiping, ZHANG Peizhen, KIRBY E, et al. Along-strike topographic variation of the Longmen shan and its significance for landscape evolution along the eastern Tibetan plateau[J]. Journal of Asian Earth Sciences, 2011, 40: 855-864.
[5] RAMSEY L A, WALKER R T, JACKSON J. Fold evolution and drainage development in the Zagros mountains of Fars province, SE Iran[J]. Basin Research, 2008, 20: 23-48.
[6] KIRBY E, WHIPPLE K X. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 2001, 29: 415-418.
[7] 闫亮, 李勇, 赵国华, 等. 青藏高原东缘龙门山构造带晚第四纪构造隆升作用的河流地貌响应[J]. 第四纪研究, 2018, 38(1): 232-246. [YAN Liang, LI Yong, ZHAO Gouhua, et al. The uplift process and the geomorphological features of the rivers system in the Longmenshan since late Quaternary[J]. Quaternary Sciences,2018, 38(1): 232-246]
[8] 常直杨, 王建, 白世彪, 等. 基于DEM的岷江上游流域构造活动强度分析[J]. 地球信息科学学报, 2014, 16(6): 568-574. [CHANG Zhiyang, WANG Jian, BAI Shibiao, et al. Quantitative analysis of the tectonic activity in Minjiang drainage basin based on DEM[J]. Journal of Geo-information Science, 2014, 16(6): 568-574]
[9] DAVIS W M. The geographical cycle[J]. The Geographical Journal, 1899, 14: 481-501.
[10] PENCK W. Morphological analysis of landforms[M]. London: Macmillan Press, 1953: 1-18.
[11] SUMMERFIELD M A. Geomorphology and global tectonics[M]. London: John Wiley and Sons Company Limited Press, 2000: 1-20.
[12] BURBANK D W, ANDERSON R S. Tectonic geomorphology[M]. Massachusetts: Blackwell Science, 2001: 1-11.
[13] 赵洪壮, 李有利, 杨景春. 北天山流域河长坡降指标与Hack剖面的新构造意义[J]. 北京大学学报(自然科学版), 2010, 46(2): 237-244. [ZHAO Hongzhuang, LI Youli, YANG Jingchun. Implication of active structure along the northern Tianshan by stream length-gradient index and Hack profile[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(2): 237-244]
[14] 闵石头, 王随继. 滇西纵向岭谷区河谷形态特征、发育规律及成因[J]. 山地学报, 2007, 25(5): 524-533. [MIN Shitou, WANG Suji. Valley morphological characteristics, development law and their cause in the longitudinal rang-gorge region[J]. Mountain Research, 2007, 25(5): 524-533]
[15] 王岩, 刘少峰, 高明星, 等. 洮河水系流域地貌特征及其构造指示意义[J]. 地学前缘, 2010, 17(4): 43-49. [WANG Yan, LIU Shaofeng, GAO Mingxing, et al. Geomorphology of the Taohe river drainage system and its structural implications[J]. Earth Science Frontiers, 2010, 17(4): 43-49]
[16] 高玄彧, 李勇. 岷江上游和中游几个河段的下蚀率对比研究[J]. 长江流域资源与环境, 2006, 15(4): 517-521. [GAO Xuanyu, LI Yong. Comparison on the incision rate in the upper and middle reaches of Minjiang river[J]. Resources and Environment in the Yangtze Basin, 2006, 15(4): 517-521]
[17] 何玉林, 胡先明. 岷江—沱江水系及新构造应力场[J], 四川地震, 1992(3): 30-34. [HE Yulin, HU Xianming. Drainage system of Minjiang and Tojiang rivers and neotectonic stress field[J]. Earthquake Research in Sichuan, 1992(3): 30-34]
[18] 李勇, 曹叔尤, 周荣军, 等. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 2005, 79(1): 28-37. [LI Yong, CAO Shuyou, ZHOU Rongjun, et al. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Tibetan plateau[J]. Acta Geologica Sinica, 2005, 79(1): 28-37]
[19] 马保起, 苏刚, 侯治华, 等. 利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J]. 地震地质, 2005, 27(2): 234-242. [MA Baoqi, SU Gang, HOU Zhihua, et al. Late Quaternary slip rate in the central part of the Longmenshan fault zone from terrace deformation along the Minjiang river[J]. Seismology and Geology, 2005, 27(2): 234-242]
[20] 杨农, 张岳桥, 孟辉, 等. 川西高原岷江上游河流阶地初步研究[J]. 地质力学学报, 2003, 9(4): 363-370. [YANG Nong, ZHANG Yueqiao, MENG Hui, et al. Study of the Minjiang river terraces in the western Sichuan plateau[J]. Journal of Geomechanics, 2003, 9(4): 363-370]
[21] 张会平, 杨农, 张岳桥, 等. 岷江水系流域地貌特征及其构造指示意义[J]. 第四纪研究, 2006, 26(1): 126-135. [ZHANG Huiping, YANG Nong, ZHANG Yueqiao, et al. Geomorphology of the Minjiang drainage system(Sichuan, China)and its structural implications[J]. Quaternary Sciences, 2006, 26(1): 126-135]
[22] 张岳桥, 杨农, 孟晖. 岷江上游深切河谷及其对川西高原隆升的响应[J]. 成都理工大学学报(自然科学版), 2005, 32(4): 331-339. [ZHANG Yueqiao, YANG Nong, MENG Hui. Deep-incised valleys along the Minjiang river upstream and their responses to the uplift of the West Sichuan Plateau, China[J]. Journal of Chengdu University of Technology(Science &Technology Edition), 2005, 32(4): 331-339]
[23] 陈浩, 李勇. 岷江上游水系对龙门山断裂带右旋走滑作用的响应[J]. 山地学报, 2013, 31(2): 211-217. [CHEN Hao, LI Yong. Water system responding to the dextral strike-slipping of the Longmenshan fault zone in the upper Min river basin [J]. Mountain Research, 2013, 31(2): 211-217]
[24] 陈浩, 李勇. 岷江上游河流阶地对龙门山断裂带逆冲作用的响应[J]. 山地学报, 2014, 32(5): 535-540. [CHEN Hao, LI Yong. River terrace responding to the obduction of the Longmenshan fault zone in the upper Min river basin[J]. Mountain Research, 2014, 32(5): 535-540]
[25] 陈浩, 杜华明, 董廷旭, 等. 涪江上游流域盆地地貌特征及构造指示意义[J]. 第四纪研究, 2020, 40(1): 148-156. [CHEN Hao, DU Huaming, DONG Tingxu, et al. Geomorphologic characteristics of the upper reaches of Fujiang drainge basin and its structural implications [J]. Quaternary Sciences, 2020, 40(1): 148-156]
[26] 梁欧博, 任俊杰, 吕延武. 涪江流域河流地貌特征对虎牙断裂带活动性的响应[J]. 地震地质, 2018, 40(1): 42-56. [LIANG Oubo, REN Junjie, LU Yanwu. The response of fluvial geomorphologic characteristics of the Fujiang drainge basin to activity of the Huya fault zone[J]. Seismology and Geology, 2018, 40(1): 42-56]
[27] 莫申国. 基于DEM的秦岭数字地貌格局研究[J]. 华东师范大学学报(自然科学版), 2008,(2): 8-14. [MO Shenguo. Study on digital landform patterns based on DEM in Qinling Mts[J]. Journal of East China Normal University(Natural Science), 2008,(2): 8-14]
[28] 曹伟超, 陶和平, 孔博, 等. 基于DEM数据分割的西南地区地貌形态自动识别研究[J]. 中国水土保持, 2011, 32(3): 38-41. [CAO Weichao, TAO Heping, KONG Bo, et al. Automatic recognition of landform in southwest China based on DEM data segmentation[J]. Soil and Water Conservation in China, 2011, 32(3): 38-41]
[29] 中国科学院地理研究所. 中国1:100万地貌图制图规范[M]. 北京: 科学出版社, 1987. [Institute of Geography in Chinese Academy of Sciences. Standards for 1:1 million geomorphologic map in China[M]. Beijing: Science Press, 1987]
[30] 文力, 刘静, M. Oskin, 等. 活动构造对高原边界侵蚀速率空间分布的控制作用—以龙门山地区为例[J].第四纪研究, 2012, 32(5): 968-985. [WEN Li, LIU Jing, M. Oskin, et al. Pattern of modern denudation in the Longmenshan, eastern Tibetan plateau: tectonic controls on focused erosion along the plateau margin[J]. Quaternary Sciences, 2012, 32(5): 968-985]
[31] 谭锡斌. 龙门山推覆构造带新生代热演化历史研究及其对青藏高原东缘隆升机制的约束[J]. 国际地震动态, 2013, 43(10): 44-46. [TAN Xibin. Study on Cenozoic thermal evolution history of Longmenshan nappe tectonic belt and its restriction on uplift mechanism of eastern margin of Qinghai-Tibet plateau[J]. Recent Developments in World Seismology, 2013, 43(10): 44-46]
[32] 邓宾, 刘树根, 李智武, 等. 青藏高原东缘及四川盆地晚中生代以来隆升作用对比研究[J]. 成都理工大学学报(自然科学版), 2008, 35(4): 477-486. [DENG Bin, LIU Shugen, LI Zhiwu, et al. A comparative study of the late Mesozoic uplifting in the eastern margin of Qinghai-Tibet plateau and Sichuan basin, China[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2008, 35(4): 477-486]
[33] 嵇少丞. 龙门山断裂带与强震[EB/OL].(2013-04-28)[2020-03-16]. http://wenku.baidu.com. [JI Shaocheng. Longmenshan fault zone and massive earthquake[EB/OL].(2013-04-28)[2020-03-16]. http:// wenku.baidu.com]
[34] 李勇, DENSMORE A L, 周荣军, 等. 青藏高原东缘数字高程剖面及其对晚新生代河流下切深度和下切速率的约束[J]. 第四纪研究, 2006, 26(2): 236-243. [LI Yong, DENSMORE A L, ZHOU Rongjun, et al. Profiles of digital elevation models(DEM)crossing the eastern margin of the Tibetan plateau and their constraints on dissection depths and incision rates of late cenozoic rivers[J]. Quaternary Sciences, 2006, 26(2): 236-243]
[35] 李勇, 周荣军, DENSMORE A L,等. 青藏高原东缘大陆动力学过程与地质响应[M]. 北京: 地质出版社, 2006: 44-48. [LI Yong, ZHOU Rongjun, DENSMORE A L, et al. Continental dynamics and geological responses of the eastern margin of Qinghai-Tibet plateau[M]. Beijing: Geological Publishing House, 2006: 44-48]

相似文献/References:

[1]曹珂,肖竞.契合地貌特征的山地城镇道路规划——以西南山地典型城镇为例[J].山地学报,2013,(04):473.
 CAO Ke,XIAO Jing.Road System Planning Based on Topographic Analysis——Case Studies of Mountainous Cities in Southwest China[J].Mountain Research,2013,(4):473.
[2]冯金良,崔之久,朱立平,等.夷平面研究评述[J].山地学报,2005,(01):1.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-04-22; 改回日期(Accepted date): 2020-07-25
基金项目(Foundation item):国家自然科学基金项目(41671220); 四川省科技厅科技计划项目(2019YJ0496)。[National Natural Science Foundation of China(41671220); Science and Technology Plan of Science and Technology Department of Sichuan Province(2019YJ0496)]
作者简介(Biography):陈浩(1977-),男,四川三台人,博士,教授,主要研究方向:构造地貌与第四纪环境。[CHEN Hao(1977-)male, born in Santai, Sichuan province, Ph.D., professor, research on tectonic geomorphology and quaternary environment] E-mail: chenhao11611@163.com
更新日期/Last Update: 2020-07-30