[1]廖佩琳,高全洲*,李 琦,等.流域源区溪流CO2的来源与扩散过程研究综述[J].山地学报,2020,(4):507-519.[doi:10.16089/j.cnki.1008-2786.000529]
 LIAO Peilin,GAO Quanzhou,*,et al.Review of the Research on Sources and Diffusion Processes of CO2 in Headwater Streams[J].Mountain Research,2020,(4):507-519.[doi:10.16089/j.cnki.1008-2786.000529]
点击复制

流域源区溪流CO2的来源与扩散过程研究综述()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第4期
页码:
507-519
栏目:
山地环境
出版日期:
2020-09-27

文章信息/Info

Title:
Review of the Research on Sources and Diffusion Processes of CO2 in Headwater Streams
文章编号:
1008-2786-(2020)4-507-13
作者:
廖佩琳1高全洲123*李 琦1杨茜茜1孙渝雯1
1.中山大学 地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室, 广州 510275; 2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519080; 3.广东省地质过程与矿产资源探查重点实验室, 广州 510275
Author(s):
LIAO Peilin1GAO Quanzhou1 2 3*LI Qi1YANG Qianqian1SUN Yuwen1
1. Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China; 2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519080, Guangdong, China; 3. Guangdong Provincial Key Laboratory of Mineral Resources & Geological Processes, Guangzhou 510275, China
关键词:
源区溪流 地下水 湍流 CO2扩散 碳循环
Keywords:
headwater stream groundwater turbulence CO2 diffusion carbon cycle
分类号:
P592
DOI:
10.16089/j.cnki.1008-2786.000529
文献标志码:
A
摘要:
江河水系的源头多由规模小但数量多的溪流构成。溪流是源区生态系统向下游进行碳输出的开端,同时也存在水体CO2向大气扩散的过程。溪流CO2扩散通量(FCO2)取决于水体二氧化碳分压(pCO2)、水-气界面因湍流而产生的CO2扩散速率(kCO2)及溪流水域面积等方面,可以直接测量也可以通过经验公式及模型估算。溪流pCO2受外源输入和内源产生两个过程的制约。外源CO2是由壤中流和地下水向溪流注入的溶解无机碳(DIC)转化而来,内源主要指水体有机质分解产生的CO2。水-气界面kCO2主要受到与河床坡度、粗糙度及流量变化密切相关的水流湍流程度的影响。源区溪流FCO2在时间上表现为暖湿季节>干冷季节、夜间>白天、洪水期>非洪水期; 全球空间尺度呈现自热带向寒温带递减; 特定溪流内自地下水排泄区向下游递减。目前,关于源区溪流CO2来源与扩散的研究逐渐增多,但是在溪流CO2各种内外来源贡献量与贡献比例的估算、源区生态系统中各地理要素对溪流外源碳输入过程的控制、溪流水-气界面FCO2估算模型及山区溪流kCO2和CO2扩散过程等方面还有待深入研究。
Abstract:
The origin of a large river system is mostly composed of small but numerous streams. Headwater streams are not only the beginning of carbon output from terrestrial ecosystems to downstream, but also the hotspots for carbon dioxide(CO2)evasion to atmosphere. The fluxes of CO2 diffusion from streams to atmosphere(FCO2), which depend on CO2 partial pressure(pCO2), gas transfer velocities(kCO2)and area of streams, can be measured directly or estimated by empirical formulas and models. The pCO2 in streams is controlled by both external and internal CO2 sources. External CO2 source is derived from dissolved inorganic carbon(DIC)transported by interflow and groundwater. Internal CO2 source is mainly derived from the decomposition of organic matter in water bodies. The kCO2 is mainly affected by turbulence varying with streambed and discharge. In terms of time, the FCO2 from streams to atmosphere is warm and wet season>dry and cold season, night>day, flood period>non-flood period. Spatially, the FCO2 from streams to atmosphere shows a gradual decline from tropical zone to boreal-arctic zone on global scale and from groundwater seepage area to downstream for specific stream. Until now, researches on sources and diffusion processes of CO2 in headwater streams are gradually increasing, but some aspects should be given more attention, for example, the estimation of contribution rates of various internal and external sources of CO2 in streams, the control of geographical elements on external carbon input process from terrestrial ecosystems to the streams, the estimation model of FCO2 at turbulent streams, and kCO2 and diffusion process of CO2 in the mountain stream.

参考文献/References:

[1] DOWNING J A, COLE J J, DUARTE C M, et al. Global abundance and size distribution of streams and rivers [J]. Inland Waters, 2012, 2(4): 229-236.
[2] STRAHLER A N. Quantitative analysis of watershed geomorphology [J]. Transactions, American Geophysical Union, 1957, 38(6): 913-920.
[3] BUTMAN D, RAYMOND P A. Significant efflux of carbon dioxide from streams and rivers in the United States [J]. Nature Geoscience, 2011, 4(12): 839-842.
[4] HOTCHKISS E R, HALL JR R O, SPONSELLER R A, et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers [J]. Nature Geoscience, 2015, 8(9): 696-699.
[5] BEAULIEU J J, SHUSTER W D, REBHOLZ J A. Controls on gas transfer velocities in a large river [J]. Journal of Geophysical Research: Biogeosciences, 2012, 117: G02007.
[6] RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters [J]. Nature, 2013, 503(7476): 355-359.
[7] RAYMOND P A, ZAPPA C J, BUTMAN D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers [J]. Limnology and Oceanography: Fluids and Environments, 2012, 2(1): 41-53.
[8] LE QUÉRÉ C, PETERS G P, ANDRES R J, et al. Global carbon budget 2013 [J]. Earth System Science Data, 2014, 6(1): 235-263.
[9] AUFDENKAMPE A K, MAYORGA E, RAYMOND P A, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere [J]. Frontiers in Ecology and the Environment, 2011, 9(1): 53-60.
[10] KOPRIVNJAK J-F, DILLON P J, MOLOT L A. Importance of CO2 evasion from small boreal streams [J]. Global Biogeochemical Cycles, 2010, 24(4): GB4003.
[11] ROBERTS B J, MULHOLLAND P J, HILL W R. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream [J]. Ecosystems, 2007, 10(4): 588-606.
[12] PETER H, SINGER G A, PREILER C, et al. Scales and drivers of temporal pCO2 dynamics in an Alpine stream [J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(6): 1078-1091.
[13] WALLIN M B, ÖQUIST M G, BUFFAM I, et al. Spatiotemporal variability of the gas transfer coefficient(KCO2)in boreal streams: Implications for large scale estimates of CO2 evasion [J]. Global Biogeochemical Cycles, 2011, 25: GB3025.
[14] RAWITCH M, MACPHERSON G L, BROOKFIELD A. Exploring methods of measuring CO2 degassing in headwater streams [J]. Sustainable Water Resources Management, 2019, 5(4): 1765-1779.
[15] LEITH F I, DINSMORE K J, WALLIN M B, et al. Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment [J]. Biogeosciences, 2015, 12(6): 1881-1892.
[16] LONG H, VIHERMAA L, WALDRON S, et al. Hydraulics are a first-order control on CO2 efflux from fluvial systems [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(10): 1912-1922.
[17] BASTVIKEN D, SUNDGREN I, NATCHIMUTHU S, et al. Technical Note: Cost-efficient approaches to measure carbon dioxide(CO2)fluxes and concentrations in terrestrial and aquatic environments using mini loggers [J]. Biogeosciences, 2015, 12(12): 3849-3859.
[18] HALL JR R O, TANK J L, BAKER M A, et al. Metabolism, Gas exchange, and carbon spiraling in rivers [J]. Ecosystems, 2016, 19(1): 73-86.
[19] 罗佳宸,倪茂飞,李思悦. 重庆西部山区典型湖泊水-气界面CO2交换通量及其影响因素 [J]. 环境科学,2019,40(1):192-199. [LUO Jiachen, NI Maofei, LI Siyue. Water-Air Interface CO2 exchange flux of typical lakes in a mountainous area of the Western Chongqing and their influencing factors [J]. Environmental Science, 2019, 40(1): 192-199]
[20] 张永领,杨小林,张东. 小浪底水库影响下的黄河花园口站和小浪底站pCO2特征及扩散通量 [J]. 环境科学,2015,36(1):40-48. [ZHANG Yongling, YANG Xiaolin, ZHANG Dong. Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir [J]. Environmental Science, 2015, 36(1): 40-48]
[21] 祁第,翟惟东,陈能汪,等. 九龙江的碳酸盐体系、CO2分压及其调控 [J]. 地球与环境,2014,42(3):286-296. [QI Di, ZHAI Weidong, CHEN Nengwang, et al. Carbonate system and partial pressure of CO2 in the subtropical Jiulongjiang River, China: a discussion on controlling mechanisms [J]. Earth and Environment, 2014, 42(3): 286-296]
[22] 张龙军,徐雪梅,温志超. 秋季黄河pCO2控制因素及水-气界面通量 [J]. 水科学进展,2009,20(2):227-235. [ZHANG Longjun, XU Xuemei, WEN Zhichao. Control factors of pCO2 and CO2 degassing fluxes from the Yellow River in autumn [J]. Advances in Water Science, 2009, 20(2): 227-235]
[23] 钱娟婷,吴起鑫,安艳玲,等. 三岔河pCO2特征及水-气界面通量分析 [J]. 中国环境科学,2017,37(6):2263-2269. [QIAN Juanting, WU Qixin, AN Yanling, et al. Partial pressure of CO2 and CO2 outgassing fluxes of Sancha River [J]. China Environmental Science, 2017, 37(6): 2263-2269]
[24] 李丽,蒲俊兵,李建鸿,等. 亚热带典型岩溶溪流水气界面CO2交换通量变化过程及其环境影响 [J]. 环境科学,2016,37(7):2487-2495. [LI Li, PU Junbing, LI Jianhong, et al. Variations of CO2 exchange fluxes across water-air interface and environmental meaning in a surface stream in subtropical karst area, SW China [J]. Environmental Science, 2016, 37(7): 2487-2495]
[25] 莫雪,蒲俊兵,袁道先,等. 亚热带典型岩溶区地表溪流溶解无机碳昼夜变化特征及其影响因素 [J]. 第四纪研究,2014,34(4):873-880. [MO Xue, PU Junbing, YUAN Daoxian, et al. Diel Variation and influence factors of dissolved inorganic carbon in surface creek fed by a karst subterranean stream in subtropical area, SW China [J]. Quaternary Sciences, 2014, 34(4): 873-880]
[26] MACDONALD M J, MINOR E C. Photochemical degradation of dissolved organic matter from streams in the western Lake Superior watershed [J]. Aquatic Sciences, 2013, 75(4): 509-522.
[27] 陶澍,梁涛,徐尚平,等. 伊春河河水溶解态有机碳含量和输出通量的时空变化 [J]. 地理学报,1997,52(3):64-71. [TAO Shu, LIANG Tao, XU Shangping, et al. Temporal and spatial variation of dissolved organic carbon content and its flux in Yichun River [J]. Acta Geographica Sinica, 1997, 52(3): 64-71]
[28] GAO Tanguang, KANG Shichang, CHEN Rensheng, et al. Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau [J]. Science of The Total Environment, 2019, 686: 370-381.
[29] LI Xiangying, DING Yongjian, XU Jianzhong, et al. Importance of mountain glaciers as a source of dissolved organic carbon [J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2123-2134.
[30] MA Xiaoliang, LIU Guimin, WU Xiaodong, et al. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau [J]. Science of The Total Environment, 2018, 630: 314-322.
[31] WINTERDAHL M, WALLIN M B, KARLSEN R H, et al. Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams [J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(10): 2630-2651.
[32] AMADO A M, MEIRELLES-PEREIRA F, VIDAL L O, et al. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones [J]. Frontiers in Microbiology, 2013, 4: 167.
[33] WU Zhipeng, WU Weidong, LIN Chen, et al. Deciphering the origins, composition and microbial fate of dissolved organic matter in agro-urban headwater streams [J]. Science of the Total Environment, 2019, 659: 1484-1495.
[34] DUVERT C, BUTMAN D E, MARX A, et al. CO2 evasion along streams driven by groundwater inputs and geomorphic controls [J]. Nature Geoscience, 2018, 11(11): 813-818.
[35] MARX A, DUSEK J, JANKOVEC J, et al. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective [J]. Reviews of Geophysics, 2017, 55(2): 560-585.
[36] BOND-LAMBERTY B, THOMSON A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010, 464(7288): 579-582.
[37] RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
[38] JOHNSON M S, LEHMANN J, RIHA S J, et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration [J]. Geophysical Research Letters, 2008, 35(17): L17401.
[39] DAVIDSON E A, VERCHOT L V, CATTÂNIO J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of Eastern Amazonia [J]. Biogeochemistry, 2000, 48(1): 53-69.
[40] ÖQUIST M G, WALLIN M, SEIBERT J, et al. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream [J]. Environmental Science & Technology, 2009, 43(19): 7364-7369.
[41] DINSMORE K J, BILLETT M F, SKIBA U M, et al. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment [J]. Global Change Biology, 2010, 16(10): 2750-2762.
[42] DUVERT C, BOSSA M, TYLER K J, et al. Groundwater-derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(2): 312-327.
[43] OVIEDO-VARGAS D, DIERICK D, GENEREUX D P, et al. Chamber measurements of high CO2 emissions from a rainforest stream receiving old C-rich regional groundwater [J]. Biogeochemistry, 2016, 130(1/2): 69-83.
[44] 闫志为,韦复才. 地下水中CO2的成因综述 [J]. 中国岩溶,2003,22(2):118-123. [YAN Zhiwei, WEI Fucai. Summary on the genesis of CO2 in groundwater [J]. Garsologica Sinica, 2003, 22(2): 118-123]
[45] 刘再华,张美良,游省易,等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征:以云南白水台为例 [J]. 地球化学,2004,33(3):269-278. [LIU Zaihua, ZHANG Meiliang,YOU Shengyi, et al. Spatial and diurnal variations of geochemical indicators in a calcite-precipitating stream-Case study of Baishuitai, Yunnan [J]. Geochimica, 2004, 33(3): 269-278]
[46] HORGBY Å, SEGATTO P L, BERTUZZO E, et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains [J]. Nature Communications, 2019, 10: 4888.
[47] 周小萍,蓝家程,张笑微,等. 岩溶溪流的脱气作用及碳酸钙沉积——以重庆市南川区柏树湾泉溪流为例 [J]. 沉积学报, 2013,31(6):1014-1021. [ZHOU Xiaoping, LAN Jiacheng, ZHANG Xiaowei, et al. CO2 outgassing and precipitation of calcium carbonate in a Karst Stream: A case study of Baishuwan Spring in Nanchuan, Chongqing [J] Acta Sedimentologica Sinica, 2013, 31(6): 1014-1021.]
[48] CAMPEAU A, WALLIN M B, GIESLER R, et al. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes [J]. Scientific Reports, 2017, 7(1): 9158.
[49] ALIN S R, RASERA M F F L, SALIMON C I, et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116: G01009.
[50] RAN Lishan, LI Lingyu, TIAN Mingyang, et al. Riverine CO2 emissions in the Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1439-1455.
[51] MAURICE L, RAWLINS B G, FARR G, et al. The influence of flow and bed slope on gas transfer in steep streams and their implications for evasion of CO2 [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2862-2875.
[52] DEMARS B O L, MANSON J R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: A critical review [J]. Water Research, 2013, 47(1): 1-15.
[53] COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget [J]. Ecosystems, 2007, 10(1): 172-185.
[54] LORKE A, BODMER P, NOSS C, et al. Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters [J]. Biogeosciences, 2015, 12(23): 7013-7024.
[55] PODGRAJSEK E, SAHLÉE E, BASTVIKEN D, et al. Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes [J]. Biogeosciences, 2014, 11(15): 4225-4233.
[56] JONSSON A, ÅBERG J, LINDROTH A, et al. Gas transfer rate and CO2 flux between an unproductive lake and the atmosphere in northern Sweden [J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G4): G04006.
[57] VACHON D, PRAIRIE Y T, COLE J J. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange [J]. Limnology and Oceanography, 2010, 55(4): 1723-1732.
[58] CHUNG S, PARK H, YOO J. Variability of pCO2 in surface waters and development of prediction model [J]. Science of the Total Environment, 2018, 622-623: 1109-1117.
[59] HUNT C W, SALISBURY J E, VANDEMARK D. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers [J]. Biogeosciences, 2011, 8(10): 3069-3076.
[60] ABRIL G, BOUILLON S, DARCHAMBEAU F, et al. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters [J]. Biogeosciences, 2015, 12(1): 67-78.
[61] YOON T K, JIN H, OH N H, et al. Technical note: Assessing gas equilibration systems for continuous pCO2 measurements in inland waters [J]. Biogeosciences, 2016, 13(13): 3915-3930.
[62] JOHNSON M S, BILLETT M F, DINSMORE K J, et al. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications [J]. Ecohydrology, 2010, 3(1): 68-78.
[63] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean [J]. Journal of Geophysical Research, 1992, 97(C5): 7373-7382.
[64] COLE J J, CARACO N F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 [J]. Limnology and Oceanography, 1998, 43(4): 647-656.
[65] ULSETH A J, HALL JR R O, CANADELL M B, et al. Distinct air-water gas exchange regimes in low-and high-energy streams [J]. Nature Geoscience, 2019, 12(4): 259-263.
[66] HALL JR R O, ULSETH A J. Gas exchange in streams and rivers [J]. WIREs Water, 2020, 7(1): e1391.
[67] MARX A, CONRAD M, AIZINGER V, et al. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach [J]. Biogeosciences, 2018, 15(10): 3093-3106.
[68] POLSENAERE P, ABRIL G. Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data [J]. Geochimica et Cosmochimica Acta, 2012, 91: 220-239.
[69] DEIRMENDJIAN L, ABRIL G. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed [J]. Journal of Hydrology, 2018, 558: 129-143.
[70] CRAWFORD J T, DORNBLASER M M, STANLEY E H, et al. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(5): 952-964.
[71] BIANCHI T S, GARCIA-TIGREROS F, YVON-LEWIS S A, et al. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event [J]. Geophysical Research Letters, 2013, 40(1): 116-122.
[72] AMARAL-ZETTLER L A, ROCCA J D, LAMONTAGNE M G, et al. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita [J]. Environmental Science & Technology, 2008, 42(24): 9072-9078.
[73] YAO Guanrong, GAO Quanzhou, WANG Zhengang, et al. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China [J]. Science of the Total Environment, 2007, 376(1-3): 255-266.
[74] KHADKA M B, MARTIN J B, JIN J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment [J]. Journal of Hydrology, 2014, 513: 391-402.
[75] LAUERWALD R, LARUELLE G G, HARTMANN J, et al. Spatial patterns in CO2 evasion from the global river network [J]. Global Biogeochemical Cycles, 2015, 29(5): 534-554.
[76] BROOK G A, FOLKOFF M E, BOX E O. A world model of soil carbon dioxide [J]. Earth Surface Processes and Landforms, 1983, 8(1): 79-88.
[77] MÜLLER D, WARNEKE T, RIXEN T, et al. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river [J]. Biogeosciences, 2015, 12(20): 5967-5979.
[78] WIT F, MÜLLER D, BAUM A, et al. The impact of disturbed peatlands on river outgassing in Southeast Asia [J]. Nature Communications, 2015, 6: 10155.
[79] PU Junbing, LI Jianhong, ZHANG Tao, et al. High spatial and seasonal heterogeneity of pCO2 and CO2 emissions in a karst groundwater-stream continuum, southern China [J]. Environmental Science and Pollution Research, 2019, 26(25): 25733-25748.
[80] JONSSON A, ALGESTEN G, BERGSTRÖM A K, et al. Integrating aquatic carbon fluxes in a boreal catchment carbon budget [J]. Journal of Hydrology, 2007, 334(1/2): 141-150.
[81] TEODORU C R, DEL GIORGIO P A, PRAIRIE Y T, et al. Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada [J]. Global Biogeochemical Cycles, 2009, 23(2): GB2012.
[82] WALLIN M B, GRABS T, BUFFAM I, et al. Evasion of CO2 from streams-The dominant component of the carbon export through the aquatic conduit in a boreal landscape [J]. Global Change Biology, 2013, 19(3): 785-797.
[83] CRAWFORD J T, LOTTIG N R, STANLEY E H, et al. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance [J]. Global Biogeochemical Cycles, 2014, 28(3): 197-210.
[84] HOPE D, PALMER S M, BILLETT M F, et al. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages [J]. Hydrological Processes, 2004, 18(17): 3255-3275.
[85] VIVIROLI D, DÜRR H H, MESSERLI B, et al. Mountains of the world, water towers for humanity: Typology, mapping, and global significance [J]. Water Resources Research, 2007, 43(7): W07447.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-05-03; 改回日期(Accepted date): 2020-07-28
基金项目(Foundation item):国家自然科学基金项目(41871014)。 [National Natural Science Foundation of China( 41871014)]
作者简介(Biography):廖佩琳(1996-),女,广东始兴人,硕士研究生,主要研究方向:河流碳循环与全球变化。 [LIAO Peilin(1996-), female, born in Shixing, Guangdong province, M. Sc. candidate, research on riverine carbon cycle and global change] E-mail: liaoplin@mail2.sysu.edu.cn
*通讯作者(Corresponding author):高全洲(1965-),男,安徽太和人,博士,教授,主要研究方向:河流碳循环与全球变化。 [GAO Quanzhou(1965-), male, born in Taihe, Anhui province, Ph.D., professor, specialized in riverine carbon cycle and global change] E-mail: eesgqz@mail.sysu.edu.cn
更新日期/Last Update: 2020-07-30