[1]杨钰杰,白晓永*,谭 秋,等.1982—2015年“一带一路”地区NDVI时空演变规律及其影响因素[J].山地学报,2020,(2):252-264.[doi:10.16089/j.cnki.1008-2786.000507]
 YANG Yujie,BAI Xiaoyong*,TAN Qiu,et al.Analysis of the Spatiotemporal Evolution of NDVI and Its Influencing Factors in the “Belt and Road” Region from 1982 to 2015[J].Mountain Research,2020,(2):252-264.[doi:10.16089/j.cnki.1008-2786.000507]
点击复制

1982—2015年“一带一路”地区NDVI时空演变规律及其影响因素()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第2期
页码:
252-264
栏目:
山区发展
出版日期:
2020-05-10

文章信息/Info

Title:
Analysis of the Spatiotemporal Evolution of NDVI and Its Influencing Factors in the “Belt and Road” Region from 1982 to 2015
文章编号:
1008-2786-(2020)2-252-13
作者:
杨钰杰123白晓永24*谭 秋1罗光杰5田诗琪12
1.贵州师范大学 地理与环境科学学院,贵阳 550025; 2.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵阳 550081; 3.中国科学院地球化学研究所 普定喀斯特研究综合试验站,贵州 安顺 562100; 4.中国科学院第四纪科学与全球变化卓越创新中心,西安 710061; 5.贵州师范学院 贵州省流域地理国情监测重点实验室,贵阳 550018
Author(s):
YANG Yujie 123 BAI Xiaoyong24* TAN Qiu 1 LUO Guangjie 5 TIAN Shiqi 12
1.School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China; 2.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 3.Puding Karst Ecosystem Observation and Research Station, Chinese Academy of Sciences, Anshun 562100, Guizhou, China; 4.CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China; 5.Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang 550018, China
关键词:
“一带一路” NDVI 变化趋势 影响因素
Keywords:
“Belt and Road” vegetation evolution trend driving factors
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000507
文献标志码:
A
摘要:
植被的生长状态、变化过程及其驱动因素具有显著的区域差异性,开展相关研究对于改善生态环境具有重要意义。然而,目前对于“一带一路”的归一化植被指数(Normalized Difference Vegetation Index,NDVI)的认识仍不清晰,可能会影响到生态环境改善和绿色 “一带一路”建设。为此,本研究采用Theil-Sen中值趋势分析和Mann-Kendall显著性检验、偏相关分析和残差分析等方法探讨了1982—2015年该区域NDVI在像元上的时空演变规律及其影响因素。结果表明:(1)东南亚为植被覆盖度最高的区域,有76%的地区NDVI值在0.68以上; NDVI值低于0.27的低植被覆盖区则主要为西亚、中亚的大部分和中国西北等干旱半干旱地区及俄罗斯北部等高纬度地带;(2)研究区NDVI总体以5.39×10-4/a的速率增加(R2=0.611,p<0.0001)。NDVI显著增加,即植被显著改善的区域占37.67%,包括欧洲西部、勒拿河下游、印度大部分和中国南方地区; NDVI显著降低,即植被显著退化的区域包括中西伯利亚高原、东北平原、中亚的里海和咸海周边地区,面积仅占8.02%,显著改善区域面积是显著退化区域面积的4.70倍; 此外植被呈现轻微变化和基本不变的区域共占54.31%;(3)植被同时受降雨、温度和人为活动这三个因素共同影响的区域较少,降雨主控区域主要分布在亚洲中部干旱半干旱区以及热带地区,温度主控区域在欧洲、西亚、青藏高原和俄罗斯北部的分布较广,典型的人为主控区域则分布在俄罗斯中部、印度北部和中国南方沿海地区。本研究结果可以为“一带一路”地区植被保护与生态建设提供科学决策的理论依据。
Abstract:
Significant regional differences exist in the growth state, change process and driving factors of vegetation. However, the NDVI(Normalized Difference Vegetation Index)of the “Belt and Road” remains under studied. As a result, the scientific decision-making in the countries along the route and the construction of “community with shared future for mankind” has been affected. Therefore, this study utilized the NDVI data to describe the spatiotemporal evolution characteristics of vegetation and its driving mechanism in the study area through Theil-Sen median trend analysis and Mann-Kendall significance test, partial correlation analysis, and residual analysis. Results showed that, firstly, the region with the highest vegetation coverage, with superior rainfall and heat conditions, is Southeast Asia. NDVI was higher than 0.68 in 76% of the regions in Southeast Asia. Low vegetation coverage areas are mainly located in arid regions, such as West Asia, Central Asia and high latitudes in Northern Russia. Secondly, the average NDVI value in the study area grew at a rate of 5.39×10-4/a(R2=0.611, p<0.0001). Significant improvement areas are located in Europe, Asia minor peninsula, Lower Lena, India and southern China, and account for 37.67%. Significant decreased areas only account for 8.02%. In addition, slightly changed area and stable area accounts for 54.31%, and the significant improvement areas are 4.70 times that of the significant degraded areas. Thirdly, few areas are affected by these three factors simultaneously. Rainfall-controlled areas are mainly concentrated in arid, semi-arid and tropical regions. Temperature-controlled areas are widely distributed in high latitude and altitude. Human-controlled regions are located in central Russia, northern India and the coastal areas of southern China. The current work clarifies and discusses the spatiotemporal evolution rules and influencing factors of NDVI from 1982 to 2015 in the “Belt and Road” region. Thus, it provides a scientific basis for vegetation protection and ecological construction in this region.

参考文献/References:

[1] PIAO Shilong, WANG Xuhui, PARK T J, et al. Characteristics, drivers and feedbacks of global greening [J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27.
[2] 拉巴,拉珍,拉巴卓玛,等. 2000—2018年那曲市植被NDVI变化及气候变化响应[J]. 山地学报,2019,37(4):499-507. [LA Ba, LA Zhen, LABA Zhuoma, et al. NDVI change and its response to climate change in Nag Qu city during 2000-2018[J]. Mountain Research, 2019, 37(4): 499-507]
[3] 方精云,郭兆迪,朴世龙,等.1981—2000年中国陆地植被碳汇的估算[J].中国科学:地球科学,2007,37(6):804-812. [FANG Jingyun, GUO Zhaodi, PIAO Shilong, et al. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Science in China Series D-Earth Sciences, 2007, 50(9): 1341-1350]
[4] 刘宪锋,朱秀芳,潘耀忠,等. 1982—2012年中国植被覆盖时空变化特征[J]. 生态学报,2015,35(16):59-70. [LIU Xianfeng, ZHU Xiufang, PAN Yaozhong, et al. Spatiotemporal changes in vegetation coverage in China during 1982-2012 [J]. Acta Ecologica Sinica, 2015, 35(16): 59-70]
[5] 董战峰,葛察忠,王金南,等. “一带一路”绿色发展的战略实施框架[J]. 中国环境管理,2016,8(2):31-35,41. [DONG Zhanfeng, GE Chazhong, WANG Jinnan, et al. Stragetic implementation framework for the greening development of the Belt and Road initiative[J]. Chinese Journal of Environmental Management, 2016, 8(2): 31-35, 41]
[6] 吴绍洪,刘路路,刘燕华,等.“一带一路”陆域地理格局与环境变化风险[J]. 地理学报,2018,73(7):1214-1225. [WU Shaohong, LIU Lulu, LIU Yanhua, et al. Geographical patterns and environmental change risks in terrestrial areas of the Belt and Road [J]. Acta Geographica Sinica, 2018, 73(7): 1214-1225]
[7] 柳钦火,吴俊君,李丽,等.“一带一路”区域可持续发展生态环境遥感监测[J].遥感学报,2018,22(4):156-178. [LIU Qinhuo, WU Junjun, LI Li, et al. Ecological environment monitoring for sustainable development goals in the Belt and Road region [J]. Journal of Remote Sensing, 2018, 22(4): 156-178]
[8] 邓兴耀,姚俊强,刘志辉.基于GIMMS NDVI的中亚干旱区植被覆盖时空变化[J].干旱区研究,2017,34(1):10-19. [DENG Xingyao, YAO Junqiang, LIU Zhihui. Spatiotemporal dynamic change of vegetation coverage in arid regions in central Asia based on GIMMS NDVI [J]. Arid Zone Research, 2017, 34(1): 10-19]
[9] 刘可,杜灵通,侯静,等.近30年中国陆地生态系统NDVI时空变化特征[J].生态学报,2018,38(6):1885-1896.[LIU Ke, DU Lingtong, HOU Jing, et al. Spatiotemporal variations of NDVI in terrestrial ecosystems in China from 1982-2012 [J]. Acta Ecologica Sinica, 2018, 38(6): 1885-1896]
[10] 李飞,曾源,李晓松,等. 近30年中国陆地植被活动遥感监测[J]. 中国科学:地球科学,44(8):1671-1678. [LI Fei, ZENG Yuan, LI Xiaosong, et al. Remote sensing based monitoring of interannual variations in vegetation activity in China from 1982 to 2009[J]. Science China: Earth Sciences, 57: 1800-1806]
[11] 陈秀妍,付碧宏,时丕龙,等. 2000—2016年中亚天山植被变化及气候分异研究[J]. 干旱区地理,2019, 42(1):164-173. [CHEN Xiuyan, FU Bihong, SHI Pilong, et al. Vegetation dynamics in response to climate change in Tianshan, Central Asia from 2000 to 2016 [J]. Aird Land Geography, 2019, 42(1): 164-173]
[12] LUO Liang, DU Wenpeng, YAN Huimin, et al. Spatio-temporal patterns of vegetation change in Kazakhstan from 1982 to 2015[J]. Journal of Resources and Ecology, 2017, 8(4): 378-384.
[13] 林小惠,王军邦,李贵才,等. 基于MODIS遥感监测的东南亚地区植被动态[J]. 生态学杂志,2011,30(4):629-635. [LIN Xiaohui, WANG Junbang, LI Guicai, et al. Vegetation spatiotemporal variation in Southeast Asia based on MODIS remote sensing monitoring[J]. Chinese Journal of Ecology, 2011, 30(4): 629-635]
[14] 孙立群,李晴岚,陈骥,等. 欧亚大陆不同生态区植被生长对降水响应的季节变化规律[J]. 生态学报,2018,38(22):8051-8059. [SUN Liqun, LI Qinglan, CHEN Ji, et al. Seasonal changes in vegetation response to precipitation across eco-regions over Eurasia[J]. Acta Ecologica Sinica, 2018, 38(22): 8051-8059]
[15] 国家发展改革委,外交部,商务部.推动共建丝绸之路经济带和21世纪海上丝绸之路的愿景与行动[J].交通财会,2015,(4):82-87. [NATIONAL Development and Reform Commission, MINISTRY of Foreign Affairs, MINISTRY of Commerce. Vision and action to promote the Silk Road Economic Belt and the 21st Century Maritime Silk Road [J]. Finance & Accounting for Communications, 2015,(4): 82-87]
[16] 刘卫东.“一带一路”战略的科学内涵与科学问题[J]. 地理科学进展,2015,34(5):538-544. [LIU Weidong. Scientific understanding of the Belt and Road initiative of China and related research themes [J]. Progress in Geography, 2015, 34(5): 538-544]
[17] 王飞,丁建丽,魏阳.“一带一路”国家和地区百年尺度干旱化特征分析[J].地球信息科学学报,2017,19(11):1442-1455. [WANG Fei, DING Jianli, WEI Yang. Analysis of drought characteristics over countries and regions of “The Belt and Road” in recent one hundred years [J]. Journal of Geo-information Science, 2017, 19(11): 1442-1455]
[18] TUCKER C J. Red and photographic infrared linear combination for monitoring vegetation [J]. Remote Sensing of Environment, 1979, 8: 127-150.
[19] 张景华,封志明,姜鲁光,等.澜沧江流域植被NDVI与气候因子的相关性分析[J].自然资源学报,2015,30(9):1425-1435. [ZHANG Jinghua, FENG Zhiming, JIANG Luguang, et al. Analysis of the correlation between NDVI and climate factors in the Lancang River Basin [J]. Journal of Natural Resources, 2015, 30(9): 1425-1435]
[20] TIAN Feng, FENSHOLT R, VERBESSELT J, et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis [J]. Remote Sensing of Environment, 2015, 163: 326-340.
[21] 刘宪锋,潘耀忠,朱秀芳,等.2000—2014年秦巴山区植被覆盖时空变化特征及其归因[J].地理学报,2015,70(5):705-716. [LIU Xianfeng, PAN Yaozhong, ZHU Xiufang, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors [J]. Acta Geographica Sinica, 2015, 70(5): 705-716]
[22] 成方妍,刘世梁,尹艺洁,等.基于MODIS NDVI的广西沿海植被动态及其主要驱动因素[J].生态学报,2017,37(3):788-797. [CHENG Fangyan, LIU Shiliang, YIN Yijie, et al. The dynamics and main driving factors of coastal vegetation in Guangxi based on MODIS NDVI [J]. Acta Ecologica Sinica, 2017, 37(3): 788-797]
[23] WANG Xuhui, PIAO Shilong, CIAIS P, et al. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1240-1245.
[24] 赵舒怡,宫兆宁,刘旭颖. 2001—2013年华北地区植被覆盖度与干旱条件的相关分析[J]. 地理学报,2015,70(5):717-729. [ZHAO Shuyi, GONG Zhaoning, LIUXuying. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001-2013 [J]. Acta Geographica Sinica, 2015, 70(5): 717-729]
[25] ZHOU Liming, TUCKER C J, KAUFMANN R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999 [J]. Journal of Geophysical Research Atmospheres, 2002, 106(D17): 20069-20083.
[26] 刘洛,徐新良,段建南,等.京津风沙源区生态环境时空变化的遥感监测分析[J].地球信息科学学报,2012,13(6):819-824. [LIU Luo, XU Xinliang, DUAN Jiannan, et al. The spatial-temporal changes monitoring of ecological environment in source area of the sand and dust endangering Beijing-Tianjin by remote sensing [J]. Journal of Geo-Information Science, 2011, 13(6): 819-824]
[27] HARRIS I C, JONES P D. CRU CY4.00: Climatic Research Unit(CRU)year-by-year variation of selected climate variables by country(CY)version 4.00(Jan. 1901-Dec. 2015). Centre for Environmental Data Analysis, 2017.
[28] LIU Yang, LI Lanhai, CHEN Xi, et al. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g [J]. Global and Planetary Change, 2018, 169: 145-155.
[29] LI Meng, CHU Ronghao, SHEN Shuanghe, et al. Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China [J]. Science of the Total Environment, 2018, 625: 496-509.
[30] WAKES A, SAUVAGE S, BORBON A, et al. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France [J]. Atmospheric Environment, 2016, 141: 263-275.
[31] SONG Xiaoyan, SONG Songbai, SUN Wenyi, et al. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960-2013 [J]. Atmospheric Research, 2015, 157: 137-152.
[32] 袁丽华,蒋卫国,申文明,等.2000—2010年黄河流域植被覆盖的时空变化[J].生态学报,2013,33(24):7798-7806. [YUAN Lihua, JIANG Weiguo, SHEN Wenming, et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010 [J]. Acta Ecologica Sinica, 2013, 33(24): 7798-7806]
[33] 罗敏,古丽?加帕尔,郭浩,等.2000—2013年塔里木河流域生长季NDVI时空变化特征及其影响因素分析[J].自然资源学报,2017,32(1):52-63.[LUO Min, GULI Jiapaer, GUO Hao, et al. Spatial-temporal variation of growing-season NDVI and its responses to hydrothermal condition in the Tarim River Basin from 2000 to 2013 [J]. Journal of Natural Resources, 2017, 32(1): 52-63]
[34] JIAPAER G, LIANG Shunlin, YI Qiuxiang, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator [J]. Ecological Indicators, 2015, 58: 64-76.
[35] LIU Zhengjia, LIU Yansui, LI Yurui. Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China [J]. Ecological Indicators, 2018, 95: 370-378.
[36] HERRMANN S M, ANYAMBA A, TUVKER C J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate [J]. Global Environmental Change-Human and Policy Dimensions, 2005, 15(4): 394-404.
[37] 杨恒,沈润平,吴立叶,等. 基于S-G滤波的江西省植被覆盖度时空变化遥感分析[J]. 科学技术与工程,2014,14(22):101-106. [YANG Heng, SHEN Runping, WU Liye, et al. Temporal and spatial analysis of remotely sensed vegetation coverage changes in Jiangxi province based on S-G filter [J]. Science Technology and Engineering, 2014, 14(22): 101-106]
[38] 王静,周伟奇,许开鹏,等. 京津冀地区城市化对植被覆盖度及景观格局的影响[J]. 生态学报,2017,(21):6-16. [WANG Jing, ZHOU Weiqi, XU Kaipeng, et al. Spatiotemporal pattern of vegetation cover and its relationship with urbanization in Beijing-Tianjin-Hebei megaregion from 2000 to 2010 [J]. Acta Ecologica Sinica, 2017,(21): 6-16]
[39] 罗细芳,古育平,陈火春,等.我国沿海防护林体系生态效益价值评估[J].华东森林经理,2013,(1):25-27. [LUO Xifang, GU Yuping, CHEN Huochun, et al. Evaluation of ecological benefit value of coastal shelterbelt system in China [J]. East china Forest Management, 2013,(1): 25-27]
[40] 王强恩.我国防护林体系建设存在的问题及对策[J].农业开发与装备,2017,(9):63-64. [WANG Qiangen. Problems and countermeasures in the construction of China's shelterbelt system [J]. Agricultural Development and Equipment, 2017,(9): 63-64]
[41] 国家林业局.第八次全国森林资源清查结果[J].林业资源管理,2014,(1):1-2. [NATIONAL Forestry Administration. The eighth national forest resource inventory results [J]. Forestry Resource Management, 2014,(1): 1-2]
[42] 李树华.利用绿化技术进行生态与景观恢复的原理与手法——以日本兵库县淡路岛“故乡之森”的营造为例[J].中国园林,2005,21(11):59-64. [LI Shuhua. The principle and method of ecological and landscape restoration using greenery technology — a case study on the construction of Hometown's Forest in Awaji-island, Japan [J]. LA Engineering, 2005, 21(11): 59-64]
[43] SRIKANTA S, SANDEEP B, SHAHID R, et al. Estimating global ecosystem service values and its response to land surface dynamics during 1995-2015 [J]. Journal of Environmental Management, 2018, 223: 115-131.
[44] CHEN Chi, PARK T, WANG Xuhui, et al. China and India lead in greening of the world through land-use management [J]. Nature Sustainability, 2019, 2: 122-129.

相似文献/References:

[1]王 涛,白红英*.秦岭山地植被NDVI对气候变化与人类活动的响应[J].山地学报,2017,(06):778.[doi:10.16089/j.cnki.1008-2786.000278]
 WANG Tao,,et al.Variation of Vegetation NDVI in Response to Climate Changesand Human Activities in Qinling Mountains[J].Mountain Research,2017,(2):778.[doi:10.16089/j.cnki.1008-2786.000278]
[2]马勇刚,黄 粤,陈 曦.质变和量变两种维度下新疆山区土地覆盖变化分析[J].山地学报,2018,(01):34.[doi:10.16089/j.cnki.1008-2786.000298]
 MA Yonggang,HUANG Yue,CHEN Xi.Land Cover Change of Mountainous Regions in Xinjiang in View of Qualitative and Quantitative[J].Mountain Research,2018,(2):34.[doi:10.16089/j.cnki.1008-2786.000298]
[3]拉 巴,拉 珍,拉巴卓玛*,等.2000-2018年那曲市植被NDVI变化及气候变化响应[J].山地学报,2019,(04):499.[doi:10.16089/j.cnki.1008-2786.000442]
 LA Ba,LA Zhen,LA Ba Droma*,et al.NDVI Change and Its Response to Climate Change in Nag Qu City during 2000-2018[J].Mountain Research,2019,(2):499.[doi:10.16089/j.cnki.1008-2786.000442]
[4]艾嘉会,丁明军*,张 华,等.柯西河流域植被覆被变化特征及其土地利用背景分析[J].山地学报,2020,(6):904.[doi:10.16089/j.cnki.1008-2786.000566]
 AI Jiahui,DING Mingjun*,ZHANG Hua,et al.Temporal and Spatial Changes in the Vegetation Coverage of the Koshi River Basin and Associated Land Use Changes[J].Mountain Research,2020,(2):904.[doi:10.16089/j.cnki.1008-2786.000566]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-06-10; 改回日期(Accepted date):2020-04-13
基金项目(Foundation item):国家重点研发计划(2016YFC0502102,2016YFC0502300); 西部之光人才计划(A类)(〔2018〕99号); 贵州社会发展科技攻关计划(2017-2966)。[National Key Research Program of China(2016YFC0502102, 2016YFC0502300); Western Light Talent Program(Category A)(2018-99); Science and Technology Plan of Guizhou Province of China(2017-2966)]
作者简介(Biography):杨钰杰(1995-),女,四川泸州人,硕士研究生,主要研究方向:遥感生态环境。[YANG Yujie(1995-), female, born in Luzhou, Sichuan province, M. Sc. candidate, research on Remote sensing ecological environment] E-mail: yyyangyujie@126.com
*通讯作者(Corresponding author):白晓永(1978-),男,河北石家庄人,博士,研究员,主要研究方向:喀斯特遥感反演与全球变化。[BAI Xiaoyong(1978-), male, born in Shijiazhuang, Hebei province, Ph. D., professor, research on karst remote sensing inversion and global change] E-mail: baixiaoyong@vip.skleg.cn
更新日期/Last Update: 2020-03-30