[1]杨 乾,杨庆华*,姚锦涛,等.山地河流穿越管道冲坑扩展规律的试验研究[J].山地学报,2020,(2):241-251.[doi:10.16089/j.cnki.1008-2786.000506]
 YANG Qian,YANG Qinghua*,YAO Jintao,et al.Experimental Study in Expansion Law of Scour Hole of Pipeline Crossing Mountain River[J].Mountain Research,2020,(2):241-251.[doi:10.16089/j.cnki.1008-2786.000506]
点击复制

山地河流穿越管道冲坑扩展规律的试验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第2期
页码:
241-251
栏目:
山地灾害
出版日期:
2020-05-10

文章信息/Info

Title:
Experimental Study in Expansion Law of Scour Hole of Pipeline Crossing Mountain River
文章编号:
1008-2786-(2020)2-241-11
作者:
杨 乾杨庆华*姚锦涛张宇倩王子聪
西南交通大学 土木工程学院,成都 610031
Author(s):
YANG Qian YANG Qinghua* YAO Jintao ZHANG Yuqian WANG Zicong
School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
关键词:
水下穿越管道 冲坑 扩展速率 冲刷深度 水槽试验
Keywords:
underwater crossing pipeline scour hole expansion rate scour depth flume model test
分类号:
TV147+.5
DOI:
10.16089/j.cnki.1008-2786.000506
文献标志码:
A
摘要:
合理预测山地河流穿越管道的未来埋深和悬空长度对其安全运营至关重要。本文以北干线输气管道穿越工程为研究对象开展了水槽模型试验,观测分析河流穿越管道附近河床演变趋势,研究流量、水深和管径等因素对冲坑扩展规律的影响。结果表明:河床演变主要由推移质泥沙输移引起,而随着管径的增大,在管底形成冲坑点的次数逐渐减少; 管底形成冲刷之时冲坑竖向扩展速率很大,随着管涌的发生,冲刷速率逐渐减小,冲刷深度逐渐增大; 管底冲坑竖向扩展过程满足一级动力学反应方程,归一化处理后得到了冲刷深度与冲刷时间之间关系式; 水动力条件、管径和沙粒特性共同影响管底极限冲刷深度,采用Gauss-Seidel迭代法得到无量纲冲刷深度与相对泥沙粒径和弗劳德数Fr参数的关系式; 当Fr>0.6时,冲坑横向扩展仅为初级扩展一个阶段,当Fr<0.6时,冲坑横向扩展过程包含初级扩展和次级扩展两阶段; 最后,结合试验数据和冲坑竖向扩展经验模型,推导出冲坑横向扩展速率计算公式,且模型预测结果较好。研究结果可为探究山地河流穿越管道冲坑扩展规律及管道后期安全运营维护提供重要参考价值。
Abstract:
It's very important for safety of the pipeline crossing the mountain river to predict reasonably future scour depth and suspended length. A flume model test was carried out for the Beiganxian gas pipeline crossing engineering, the evolution tendency of riverbed around underwater crossing pipeline was observed and analyzed from the test, and the influencing factors of the expansion law of scour hole were studied, such as flow rates, water depths, pipe diameters and so on. The results showed that the riverbed evolution was mainly caused by bed load transport, the number of scour points formed at the bottom of the pipe decreased gradually with the increase of pipe diameter. The vertical expansion rate of the scour hole was very large when the scour was formed at the bottom of the pipe, with the occurrence of the canal gush, the scour rate decreased and the scour depth increased gradually. The vertical expansion process of the scour hole at the bottom of the pipe satisfied the first-order dynamic response equation, the relationship between scour depth and scour time was obtained after normalization. The hydraulic parameters, pipe diameters and sand characteristics all affected the scour depth of the underwater crossing pipeline. The dimensionless equation of scour depth between the relative sediment grain size and Froude number(Fr)was obtained by using the Gauss–Seidel iteration method. There was only one primary stage of horizontal expansion of the scour hole when Fr>0.6, and another following expansion process was added to the primary stage when Fr<0.6. Finally, the horizontal expansion calculation model of the scour hole was derived combined with test data and empirical model of vertical expansion, and the prediction result of the model was very good. It could provide an important reference for exploring the expansion law of the scour hole and the safe operation of the underwater crossing pipeline.

参考文献/References:

[1] 陈仲科.管道穿越大中型江河方案比较[J].天然气工业,2000,20(2): 83-86+2. [CHEN Zhongke. A comparison among the plans of pipeline crossing over large-medium river [J]. Natural Gas Industry, 2000, 20(2): 83-86+2]
[2] FUHRMAN D R, BAYKAL C, SUMER B M, et al. Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines [J]. Coastal Engineering, 2014, 94(7): 10-22.
[3] MIRMOHAMMADI A, KETABDARI M J. Numerical simulation of wave scouring beneath Marine pipeline using smoothed particle hydrodynamics [J]. International Journal of Sediment Research, 2011, 26(3): 331-342.
[4] ZHAO Zhihe, FERNANDO H S. Numerical simulation of scour around pipelines using an Euler–Euler coupled two-phase model [J]. Environmental Fluid Mechanics, 2007, 7(2): 121-142.
[5] LIN Lu, LI Yucheng, QIN Jianmin. Numerical simulation of the equilibrium profile of local scour around submarine pipelines based on renormalized group turbulence model [J]. Ocean Engineering, 2005, 32(17/18): 2007-2019.
[6] ZHAO Ming, CHENG Liang. Numerical investigation of local scour below a vibrating pipeline under steady currents [J]. Coastal Engineering, 2010, 57(4): 397-406.
[7] LUAN Y, LIANG D, RANA R. Scour depth beneath a pipeline undergoing forced vibration [J]. Theoretical and Applied Mechanics Letters, 2015, 5(2): 97-100.
[8] 刘延鑫,王旱祥,王苗.海底管道局部冲刷数值模拟分析[J].中国石油大学学报(自然科学版),2012,36(6):118-122. [LIU Yanxin, WANG Hanxiang, WANG Miao. Numerical simulation analysis of local scour around submarine pipeline [J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(6): 118-122]
[9] 孙建伟,耿红,孙昭晨.海底管道周围局部冲刷数值模拟分析[J].海洋技术,2010,29(1):51-55. [SUN Jianwei, GENG Hong, SUN Zhaochen. Numerical model for local scour around offshore pipelines [J]. Ocean Technology, 2010, 29(1): 51-55]
[10] YANG Lipeng, SHI Bing, GUO Yakun, et al. Calculation and experiment on scour depth for submarine pipeline with a spoiler [J]. Ocean Engineering, 2012, 55(1): 191-198.
[11] AZAMATHULLA H M, YUSOFF M M, HASAN Z A. Scour below submerged skewed pipeline [J]. Journal of Hydrology, 2014, 509(13): 615-620.
[12] AZAMATHULLA H M, ZAKARIA N A. Prediction of scour below submerged pipeline crossing a river using ANN [J]. Water Science and Technology, 2011, 63(10): 2225-2230.
[13] AZAMATHULLA H M, YUSOFF M A M. Soft computing for prediction of river pipeline scour depth [J]. Neural Computing and Applications, 2013, 23(7/8): 2465-2469.
[14] MING Zhao, VAIDYA S, QIN Zhang, et al. Local scour around two pipelines in tandem in steady current [J]. Coastal Engineering, 2015, 98: 1-15.
[15] 潘新颖,赵恩金,拾兵,等.海底子母管作用下海床冲刷的试验研究[J].中国海洋大学学报(自然科学版),2017,47(11): 109-116. [PAN Xinying, ZHAO Enjin, SHE Bing, et al. Experimental study on the local scour around the piggyback pipeline [J]. Periodical of Ocean University of China, 2017, 47(11): 109-116]
[16] 臧志鹏,滕斌,程亮,等.水流作用下海底管线三维冲刷扩展速度实验研究[J].大连理工大学学报,2009,49(1):110-114. [ZANG Zhipeng, TENG Bin, CHENG Liang, et al. Experimental research on propagation velocity of 3-D scour of pipelines on sea floor under action of currents [J]. Journal of Dalian University of Technology, 2009, 49(1): 110-114]
[17] 徐涛龙,曾祥国,姚安林,等.河流穿越高压输气管道悬空长度的动态演变过程及临界状态的数值方法研究[J].四川大学学报(工程科学版),2012,44(6): 79-85. [XU Taolong, ZENG Xiangguo, YAO Anlin, et al. Study of numerical method on critical suspended length and critical failure state of high-pressure gas pipeline crossing riverbed [J]. Journal of Sichuan University(Engineering Science Edition), 2012, 44(6):79-85]
[18] 姚安林,徐涛龙,郑健,等.河流穿越高压输气管道临界悬空长度的数值模拟研究[J].工程力学,2013,30(3):152-158. [YAO Anlin, XU Taolong, ZHENG Jian, et al. Study on numerical simulation of critical suspended length of high-pressure gas pipeline crossing riverbed [J]. Engineering Mechanics, 2013, 30(3): 152-158]
[19] 付冉,姚安林,刘霖聪,等.穿越水域输气管道裸露悬空段的应力敏感性分析[J].中国安全生产科学技术,2015,11(11): 106-111. [FU Ran, YAO Anlin, LIU Lincong, et al. Analysis on stress sensitivity for exposed and suspended section of water crossing gas pipeline [J]. Journal of Safety Science and Technology, 2015, 11(11): 106-111]
[20] 江海洋,王淑英,许泽星,等.管道穿越山地河段冲刷深度计算方法的比较研究[J].山地学报,2019,37(3): 462-467. [JIANG Haiyang, WANG Shuying, XU Zexing, et al. Comparative study on calculation methods of scour depth over riverbed traversed by pipeline [J]. Mountain Research, 2019, 37(3): 462-467] [21] 白路遥,李亮亮,马云宾,等.穿河管道河床冲刷的改进计算模型及应用[J].人民黄河,2015,37(4): 55-57+61. [BAI Luyao, LI Liangliang, MA Yunbin, et al. Improvement of calculation model and its application in river bed scour of river-crossing pipeline [J]. Yellow River, 2015, 37(4):55-57+61]
[22] 唐万金,王吉祥,杨鸣.某穿越长江输油管道工程中河床冲刷深度计算[J].人民长江,2013,44(6):59-61. [TANG Wanjin, WANG Jixiang, YANG Ming. WANG jixiang YANG Ming. Calculation of scoring depth for oil pipeline crossing Yangtze river [J]. Yangtze River, 2013, 44(6): 59-61]
[23] 杨乾,孙明楠,何沫,等.水下穿越管道附近河床演变特性试验[J].天然气工业,2019,39(10): 110-117. [YANG Qian, SUN Mingnan, HE Mo, et al. Evolution features of riverbeds near underwater crossing line pipes: An experimental study [J]. Natural Gas Industry, 2019, 39(10): 110-117]
[24] DL/T 5244-2010,电水利工程常规水工模型试验规程[S].北京: 电力出版社,2010 [DL/T 5244-2010, Code for normal hydraulics model investigation for hydropower & water resources [S]. Beijing: China Electric Power Press, 2010]
[25] 张红武.泥沙起动流速的统一公式[J].水利学报,2012,43(12): 1387-1396. [ZHANG Hongwu. A unified formula for incipient velocity of sediment [J]. Journal of Hydraulic Engineering, 2012, 43(12): 1387-1396]
[26] 刘盈溢,吕林,郑苗子,等.波流作用下海床稳定性和海底管道局部冲刷分析[J].浙江大学学报(工学版),2012,46(6):1135-1142. [LIU Yingyi, LV Lin, ZHENG Miaozi, et al. Analysis of seabed stability and local scour around submarine pipelines under waves and current [J]. Journal of Zhejiang University(Engineering Science), 2012, 46(6): 1135-1142]
[27] 何文社,方铎,杨具瑞,等.泥沙起动流速研究[J].水利学报,2002,33(10):51-56. [HE Wenshe, FANG Duo, YANG Jurui, et al. Study on incipient velocity of sediment [J]. Journal of Hydraulic Engineering, 2002, 33(10): 51-56]
[28] 吴钰骅,金伟良,毛根海,等.海底输油管道底砂床冲刷机理研究[J].海洋工程,2006,24(4):43-48. [WU Yuhua, JIN Weiliang, MAO Genhai, et al. Study on the scour mechanism of sandy seabed below submarine pipelines [J]. The Ocean Engineering, 2006, 24(4): 43-48]
[29] BIJKER E W, LEEUWESTEIN W. Interaction between pipelines and the seabed under the influence of waves and currents [G]// DENNESS B. Seabed Mechanics. Netherlands: Springer, 1984: 235-242.
[30] IBRAHIM A, NALLURI C. Scour prediction around marine pipelines [C]// Proceedings of 5th International Symposium on Offshore Mechanics and Arctic Engineering. New York: American Society of Mechanical Engineers, 1986: 679-684.
[31] MONCADA-M A T, AGUIRRE-PE J. Scour below Pipeline in River Crossings [J]. Journal of Hydraulic Engineering, 1999, 125(9): 953-958.
[32] CHEN Bing, CHENG Liang. Numerical investigation of three-dimensional flow and bed shear stress distribution around the span shoulder of pipeline [J]. Journal of Hydrodynamics(Ser. B), 2004, 16(6): 687-694.
[33] FREDSOE J, SUMER B M, ARNSKOV M M. Time scale for wave/current scour below pipelines [J]. International Journal of Offshore and Polar Engineering, 1992, 2(1): 13-17.

备注/Memo

备注/Memo:
收稿日期(Received date):2019-12-30; 改回日期(Accepted date): 2020-03-04
基金项目(Foundation item):国家自然科学基金项目(51478403)。 [National Natural Science Foundation of China(51478403)]
作者简介(Biography):杨乾(1990-),男,甘肃天水人,博士研究生,从事水动力学与泥沙研究。 [YANG Qian(1990-),male,born in Tianshui,Gansu province,Ph. D. candidate,research on hydrodynamics and sediment] E-mail: yangqian-swjtu@foxmail.com
*通讯作者(Corresponding author):杨庆华(1976-),男,博士,副教授,从事流体力学研究。[YANG Qinghua(1976-),male,Ph. D.,associate professor,research on fluid mechanics] E-mail: qhyang@home.swjtu.edu.cn
更新日期/Last Update: 2020-03-30