[1]沈思民,赵 军*,刘佳茹,等.祁连山TRMM降水数据降尺度不同方法比较研究[J].山地学报,2019,(6):923-931.[doi:10.16089/j.cnki.1008-2786.000482]
 SHEN Simin,ZHAO Jun*,LIU Jiaru,et al.Comparative Study on Different Downscaling Methods of TRMM Satellite Precipitation Data over the Qilian Mountains, China[J].Mountain Research,2019,(6):923-931.[doi:10.16089/j.cnki.1008-2786.000482]
点击复制

祁连山TRMM降水数据降尺度不同方法比较研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年第6期
页码:
923-931
栏目:
山地技术
出版日期:
2019-11-30

文章信息/Info

Title:
Comparative Study on Different Downscaling Methods of TRMM Satellite Precipitation Data over the Qilian Mountains, China
文章编号:
1008-2786-(2019)6-923-09
作者:
沈思民赵 军*刘佳茹赵彦军
西北师范大学 地理与环境科学学院,兰州 730070
Author(s):
SHEN Simin ZHAO Jun* LIU Jiaru ZHAO Yanjun
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
关键词:
TRMM降水数据 降尺度 祁连山 随机森林
Keywords:
TRMM precipitation data downscaling Qilian Mountains random forest
分类号:
P407, P413~A
DOI:
10.16089/j.cnki.1008-2786.000482
摘要:
降水数据对研究山区陆面过程、水文模型、生态模型至关重要,而山区地形复杂降水数据获取困难,且TRMM(Tropical Rainfall Measuring Mission)降水数据空间分辨率难以进行小尺度区域降水研究。本文以祁连山为研究区,应用2005-2016年的TRMM降水数据,从不同时间尺度对TRMM降水数据在祁连山的适用性进行分析,利用多元逐步回归模型、地理加权回归模型、随机森林模型三种降尺度方法,分别建立了降水与高程、植被指数、纬度、经度、坡度、坡向的关系,获得1 km高分辨率的TRMM降尺度数据,并通过对比三种模型的降尺度结果来选取适用于祁连山的降尺度方法。结果表明:(1)TRMM降水数据适用于祁连山。TRMM降水数据和实测数据在不同时间尺度上具有显著的相关性,年、季、月相关系数分别为0.88、0.92、0.88。(2)三种降尺度模型都能有效地获得1 km高分辨率的TRMM降尺度数据,其中随机森林模型更适用于获取祁连山TRMM降尺度降水数据。(3)相比于原始TRMM降水数据,随机森林模型降尺度结果整体偏小,同时具有更高的空间分辨率和更小的偏差。本研究可以为进一步获取西部山地高空间分辨降水数据和开展水文研究提供参考与借鉴。
Abstract:
The high-spatial-resolution precipitation data plays a crucial role in the studies of hydrological models, ecological models and land surface processes. However, it is difficult to obtain high-spatial-resolution precipitation data in mountainous areas due to some factors, such as varied topography, sparse rainfall gauges and complicated precipitation environment. Meanwhile, the coarse spatial resolution of the Tropical Rainfall Measuring Mission(TRMM)precipitation data is difficult to apply in small-scale regions. In this paper, TRMM precipitation data at different time scales were used to analyze its applicability in the Qilian Mountains. Based on the TRMM precipitation data from 2005 to 2016, Multiple Stepwise Regression Model, Geographical Weighted Regression Model and Random Forest Model were used to obtain downscaled precipitation data precipitation data by establishing relationships between precipitation and environmental variables(elevation, vegetation index, latitude, longitude, slope and aspect). TRMM precipitation data with 1 km high spatial resolution in the Qilian Mountains was obtained by comparing the three downscaling models and further to select the most suitable one. Results showed as follows:(1)TRMM precipitation data was well matched with rain gauge data in the Qilian Mountains. TRMM precipitation data and measured data had significant correlation on different time scales. The annual, seasonal and monthly correlation coefficients were 0.88, 0.92 and 0.88, respectively.(2)Three downscaling models can effectively obtain downscaled precipitation data with 1 km high spatial resolution in yearly time scale, the Random Forest Model was the most suitable model for downscaling of TRMM precipitation data in Qilian Mountains.(3)Compared with the original TRMM precipitation data, the downscaled results of the Random Forest Model were relatively small, with higher spatial resolution and smaller deviation. Thus, this study has certain reference significance for obtaining high spatial resolution precipitation data and cucting hydrological research in the arid mountainous areas of Northwest China.

参考文献/References:

[1] ALLEN M R, INGRAM W J. Constraints on future changes in climate and the hydrologic cycle [J].Nature, 2002, 419(6903):224-232.
[2] 叶柏生,杨大庆,丁永建,等. 中国降水观测误差分析及其修正[J].地理学报,2007,62(1):3-13. [YE Baisheng, YANG Daqing, DING Yongjian, et al. A bias-corrected precipitation climatology for China [J].Acta Geographica Sinica, 2007, 62(1):3-13]
[3] HUFFMAN G J, BOLVIN D T, NELKIN E J, et al. The TRMM multisatellite precipitation analysis(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales [J].Journal of Hydrometeorology, 2007, 8(1):38-55.
[4] 赵军,刘原峰,朱国锋,等. 热带测雨卫星数据在黑河流域的精度及应用[J].水土保持通报,2016,36(3):309-315. [ZHAO Jun, LIU Yuanfeng, ZHU Guofeng, et al. Accuracy and application of tropical rainfall measuring mission data in Heihe Rvier Basin [J].Bulletin of Soil and Water Conservation, 2016, 36(3):309-315]
[5] CAO Yueqian, ZHANG Wu, WANG Wenjing. Evaluation of TRMM 3B43 data over the Yangtze River Delta of China [J]. Scientific Reports, 2018, 8(1):1-12.
[6] CONDOM T, RAU P, ESPINOZA J C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007 [J].Hydrological Processes, 2011, 25(12):1924-1933.
[7] 孙美平,张海瑜,巩宁刚,等. 基于TRMM降水订正数据的祁连山地区最大降水高度带研究[J].自然资源学报,2019,34(3):646-657.[SUN Meiping, ZHANG Haiyu, GONG Ninggang, et al. Study on maximum precipitation height zone in Qilian Mountains area based on TRRM precipitation data [J].Journal of Natural Resources, 2019, 34(3):646-657]
[8] 胡鹏飞,李净,王丹,等. 基于MODIS和TRMM数据的黄土高原农业干旱监测[J].干旱区地理,2019,42(1):172-179.[HU Pengfei, LI Jing, WANG Dan, et al. Monitoring agricultural drought in the Loess Plateau using MODIS and TRMM data [J].Arid Land Geography, 2019, 42(1):172-179]
[9] ZHAO Qi, CHEN Qianyun, JIAO Mengyuan, et al. The temporal-spatial characteristics of drought in the Loess Plateau using the remote-sensed TRMM precipitation data from 1998 to 2014[J].Remote Sensing, 2018, 10(6):1-20.
[10] IMMERZEEL W W, RUTTEN M M, DROOGERS P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula [J].Remote Sensing of Environment, 2009, 113(2):362-370.
[11] 李净,张晓. TRMM降水数据的空间降尺度方法研究[J].地理科学,2015,35(9):1164-1169.[LI Jing,ZHANG Xiao. Downscaling method of TRMM satellite precipitation data[J].Scientia Geographica Sinica, 2015, 35(9):1164-1169]
[12] WANG Lei, CHEN Rensheng, HAN Chuntan, et al. An improved spatial-temporal downscaling method for TRMM precipitation datasets in alpine regions: a case study in northwestern China's Qilian Mountains [J].Remote Sensing, 2019, 11(7):1-23.
[13] 刘小婵,张洪岩,赵建军,等. 东北地区TRMM数据降尺度的GWR模型分析[J].地球信息科学学报,2015,17(9):1055-1062.[LIU Xiaochan, ZHANG Hongyan, ZHAO Jianjun,et al. Spatial downscaling of TRMM precipitation data based on GWR model in Northeast China [J].Journal of Geo-information Science,2015,17(9):1055-1062]
[14] 曾昭昭,王晓峰,任亮. 基于GWR模型的陕西秦巴山区TRMM降水数据降尺度研究[J].干旱区地理,2017,40(1):26-36.[ZENG Zhaozhao, WANG Xiaofeng, REN Liang. Spatial downscaling of TRMM rainfall data based on GWR model for Qinling-Daba Mountains in Shaanxi Province [J].Arid Land Geography, 2017, 40(1):26-36]
[15] 曾业隆,谭伟,王超,等. 基于GWR模型的贵州喀斯特山区TRMM 3B43降水资料降尺度分析[J].干旱气象,2018,36(3):405-414.[ZENG Yelong, TAN Wei, WANG Chao, et al.Spatial downscaling of TRMM 3B43 precipitation data based on GWR model in karst mountainous area of Guizhou Province [J].Journal of Arid Meteorology, 2018, 36(3):405-414]
[16] CHEN Cheng, ZHAO Shuhe, ZHENG Duan, et al. An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9, SI):4592-4604.
[17] ZHANG Yueyuan, LI Yungang, JI Xuan, et al. Fine-resolution precipitation mapping in a mountainous watershed: geostatistical downscaling of TRMM products based on environmental variables [J].Remote Sensing, 2018, 10(1):1-27.
[18] 范雪薇,刘海隆. 天山山区TRMM降水数据的空间降尺度研究[J].自然资源学报,2018,33(3):478-488.[FAN Xuewei, LIU Hailong. Downscaling method of TRMM satellite precipitation data over the Tianshan Mountains [J].Journal of Natural Resources, 2018, 33(3):478-488]
[19] 徐彬仁,魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J].国土资源遥感,2018,30(3):181-188. [XU Binren, WEI Yuanyuan. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm [J].Remote Sensing for Land and Resources, 2018, 30(3):181-188]
[20] 赵军,黄永生,师银芳,等. 2000-2012年祁连山中段雪线与气候变化关系[J].山地学报,2015,33(6):683-689.[ZHAO Jun, HUANG Yongsheng, SHI Yinfang, et al. Relationship between sonw line change and climate change in the middle of Qilian Mountains during 2000-2012 [J].Mountain Research, 2015, 33(6):683-689]
[21] 雪宝顶. 祁连山:伸向荒漠的湿岛[J/OL].中国国家地理,2006,(2)[2019-05-08]. http://www.dili360.com/cng/article/p5350c3d6d48c591.htm.[XUE Baoding. Qilian Mountain: Wet island stretching into the desert [J/OL]. Chinese National Geography, 2006,(2)[2019-05-08]. http://www.dili360.com/cng/article/p5350c3d6d48c591.htm.]
[22] HUFFMAN G J, BOLVIN D T. TRMM and other data precipitation data set documentation [EB/OL].(2018-04-26)[2019-05-08]. https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_180426.pdf.
[23] SULLA-MENASHE D, FRIEDL M A. User guide to collection 6 MODIS Land Cover(MCD12Q1 and MCD12C1)product [EB/OL].(2018-05-18)[2019-05-08]. https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf.
[24] 范科科,段利民,张强,等. 基于多种高分辨率卫星数据的TRMM降水数据降尺度研究--以内蒙古地区为例[J].地理科学,2017,37(9):1411-1421.[FAN Keke, DUAN Limin, ZHANG Qiang, et al. Downscaling analysis of TRMM precipitation based on multiple high-resolution satellite data in the Inner Mongolia, China [J].Scientia Geographica Sinica,2017,37(9):1411-1421]
[25] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression [M].New York: Wiley, 2002.
[26] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Geographically weighted regression [J].Journal of the Royal Statistical Society: Series D(The Statistician), 1998, 47(3):431-443.
[27] BREIMAN L. Random forests [J]. Machine Learning,2001, 45(1):5-32.
[28] 李欣海. 随机森林模型在分类与回归分析中的应用[J].应用昆虫学报,2013,50(4):1190-1197.[LI Xinhai. Using “random forest” for classification and regression [J]. Chinese Journal of Applied Entomology, 2013, 50(4):1190-1197]
[29] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38.[FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on Random Forests [J].Statistics & Information Forum, 2011, 26(3):32-38]

相似文献/References:

[1]胡 实,韩 建,占车生*,等.基于地理加权回归模型的典型山地卫星反演降水产品降尺度研究[J].山地学报,2019,(03):451.[doi:10.16089/j.cnki.1008-2786.000437]
 HU Shi,HAN Jian,ZHAN Chesheng*,et al.Spatial Downscaling of Remotely Sensed Precipitation Using Geographically Weighted Regression Algorithms in Typical Mountainous Areas, China[J].Mountain Research,2019,(6):451.[doi:10.16089/j.cnki.1008-2786.000437]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-05-07; 改回日期(Accepted date): 2019-11-04
基金项目(Foundation item):国家自然科学基金项目(41661084)。[National Nature Science Foundation of China(41661084)]
作者简介(Biography):沈思民(1995- ),男,江苏徐州人,硕士研究生,主要研究方向:资源环境遥感。 [SHEN Simin(1995- ), male, born in Xuzhou, Jiangsu province, M.Sc candidate, research on remote sensing for natural resources and environment] E-mail: ssmwyy@qq.com
更新日期/Last Update: 2019-11-30