参考文献/References:
[1] THORP J, DYE D S. The Chengdu clays - deposits of possible loessial origin in western and northwestern Sichuan basin[J]. Acta Geologica Sinica, 1936, 15(2): 225-242.
[2] FENG Jinliang, HU Zhaoguo, JU Jianting, et al. The dust provenance and transport mechanism for the Chengdu Clay in the Sichuan Basin, China[J]. Catena, 2014, 121:68-80.
[3] 冯金良,赵振宏,赵翔,等.“成都粘土”的成因、物源、时代及其古环境问题[J].山地学报,2014,32(5):513-525.[FENG Jinliang, ZHAO Zhenhong, ZHAO Xiang, et al. The origin, provenance, age and climatic links of the Chengdu clay: a review[J]. Mountain Research, 2014, 32(5): 513-525]
[4] 张惠英.从微结构特征对成都粘土成因的初步探讨[J].水文地质工程地质,1986,13(1):17-19.[ZHANG Huiying. Genesis of the Chengdu clay based on microstructural features research[J]. Hydrogeology & Engineering Geology, 1986, 13(1): 17-19]
[5] 成都地质学院水文工程地质教研室. 成都粘土的工程地质特征[J]. 成都地质学院学报,1960,1(1):75-91.[Hydrological Engineering Geology Division, Chengdu College of Geology. Engineering geological characteristics of Chengdu Clay [J]. Journal of Chengdu College of Geology, 1960, 1(1):75-91]
[6] 费美高,许国琳,张品萃.成都粘土中的构造断裂现象及其研究意义[J].地质灾害与环境保护,1995,6(3):24-32.[FEI Meigao, XU Guolin, ZHANG Pincui. Phenomena of tectonic fractures and faults in Chengdu Clay[J]. Journal of Geological Hazards and Environment Preservation, 1995, 6(3): 24-32]
[7] 张品萃. 游离Fe2O3对成都粘土部分工程地质特征的影响[J].矿物岩石,1999,19(1):83-86.[ZHANG Pincui. Effect of free Fe2O3 on the engineering properties of Chengdu Clay[J]. Journal of Mineralogy and Petrology, 1999, 19(1): 83-86]
[8] 四川省区域地层表编写组. 西南地区区域地层表(四川分册)[M]. 北京: 地质出版社:1978,96-97. [Editorial Committee of Sichuan stratigraphy. Regional stratigraphy in Southwest China(Sichuan branch)[M]. Beijing: Geological Publishing House,1978:96-97]
[9] 李承三,吴燕生,李永昭,等. 四川龙门山南段东坡及其山前带第四纪冰川遗迹[G] //中国第四纪委员会等,中国第四纪冰川遗迹研究文集. 北京:科学出版社,1964:14-84.[LI Chengsan, WU Yansheng, LI Yongzhao, et al. Quaternary glacial relics in eastern foot of southern Longmenshan Mountains [G] / / Corpus of Quaternary glacial relics in China, Quaternary Commission of China. Beijing: Science Press, 1964:14-84]
[10] 李春昱.雅安期与江北期砾石层之生成[J].地质论评,1947,12:117-126.[LI Chunyu. Generation of gravel layers in Ya'an and Jiangbei periods[J]. Geological Review, 1947, 12: 117-126]
[11] 柯懋. 关于“成都粘土”问题的商榷[N]. 地质报,1981-03-20.[KE Mao. Discussion on the issue of “Chengdu clay” [N]. Geological newspaper, 1981-03-20]
[12] 汪波,聂前勇,王运生,等.也论成都粘土的成因[J].地质灾害与环境保护,2002,13(1):54-56.[WANG Bo, NIE Qianyong, WANG Yunsheng, et al. Discussion on the genetic mechanism of the Chengdu Clay[J]. Journal of Geological Hazards and Environment Preservation, 2002, 13(1): 54-56]
[13] FENG Jinliang, HU Zhaoguo, JU Jianting, et al. Variations in trace element(including rare earth element)concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits[J]. Quaternary International, 2011, 236(1): 116-126.
[14] 马溶之.中国黄土之生成[J].地质论评,1944,9(z2):207-224.[MA Rongzhi. Formation of Chinese loess[J]. Geology Reviews, 1944, 9(z2): 207-224]
[15] FENG Jinliang, JU Jianting, CHEN Feng, et al. Identification of a late Quaternary alluvial-aeolian sedimentary sequence in the Sichuan Basin, China[J]. Quaternary Research, 2016, 85(2): 279-289.
[16] 应立朝,梁斌,王全伟,等.成都平原区成都粘土的粒度特征及其成因意义[J].沉积与特提斯地质,2012,32(1):72-77.[YING Lichao, LIANG Bin, WANG Quanwei, et al. Grain size analysis and origin of the Chengdu clay from the Chengdu Plain, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(1): 72-77]
[17] 乔彦松,赵志中,李增悦,等.成都平原红土堆积的风成成因证据[J].第四纪研究,2007,27(2):286-294.[QIAO Yansong, ZHAO Zhizhong, LI Zengyue, et al. Aeolian origin of the red earth formation in the Chengdu Plain[J]. Quaternary Science, 2007, 27(2): 286-294]
[18] 胡兆国,冯金良,鞠建廷.成都粘土中石英的粒度分布及其表面微结构特征[J].山地学报,2010,28(4):392-406.[HU Zhaoguo, FENG Jinliang, JU Jianting. Grain size distribution and micro-structure of quartz in the Chengdu Clay[J]. Mountain Research, 2010, 28(4): 392-406]
[19] 梁斌,王全伟,朱兵,等.川西地区成都粘土的光释光年代学[J].第四纪研究,2013,33(4):823-828.[LIANG Bin, WANG Quanwei, ZHU Bing, et al. Optically stimulated luminescence dating of the Chengdu clay in the West Sichuan[J]. Quaternary Science, 2013, 33(4): 823-828]
[20] ZHAO Zhizhong, QIAO Yansong, WANG Yan, et al. Magnetostratigraphic and paleoclimatic studies on the red earth formation from the Chengdu Plain in Sichuan Province, China[J]. Science in China(Series D: Earth Sciences), 2007, 50(6): 927-935.
[21] 应立朝,梁斌,王全伟,等.成都粘土地球化学特征及其对物源和风化强度的指示[J].中国地质,2013,40(5):1666-1674.[YING Lichao, LIANG Bin, WANG Quanwei, et al. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity[J]. Geology in China, 2013, 40(5): 1666-1674]
[22] DING Z, YU Z, RUTTER N W, et al. Towards an orbital time-scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
[23] LV Lianqing, FANG Xiaomin, LU Huayu, et al. Millennial-scale climate change since the last glaciation recorded by grain sizes of loess deposits on the northeastern Tibetan Plateau[J]. Chinese Science Bulletin, 2004, 49(11): 1157-1164.
[24] 乔彦松,郭正堂,郝青振,等.中新世黄土-古土壤序列的粒度特征及其对成因的指示意义[J].中国科学:地球科学,2006,36(7):646-653.[QIAO Yansong, GUO Zhengtang, HAO Qingzhen, et al. 2006.Grain-size features of a Miocene loess-soil sequence at Qinan: implications on its origin[J]. Science in China(Series D), 2006, 36(7): 646-653]
[25] 刘涛,庞奖励,黄春长,等.湖北郧县黄坪村黄土-古土壤序列体积分形维数特征及其环境意义[J].东农业科学,2018,50(4):73-78.[LIU Tao, PANG Jiangli, HUANG Chunchang, et al. Volumetric fractal dimension characteristics of Loess-Paleosol sequence and its environmental significance in Huangping village, Yunxian county, Hubei province[J]. Shandong Agricultural Sciences, 2018, 50(4): 73-78]
[26] FRIEDMAN G M, SANDERS J E. Principles of sedimentology[M]. New York: John Wiley & Sons, 1978: 792.
[27] 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550.[WANG Guoliang, ZHOU Shenglu, ZHAO Qiguo. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4): 545-550]
[28] 刘东生.黄土与环境[M].北京:科学出版社,1985:203.[LIU Dongsheng. Loess and the environment[M]. Beijing: Science Press, 1985: 203]
[29] PATTERSON E M, GILLETTE D A. Commonalities in measured size distributions for aerosols having a soil-derived component[J]. Journal of Geophysical Research, 1977, 82(15): 2074-2082
[30] 盛海洋.青藏高原东北缘若尔盖盆地黄土的成因[J].地球科学,2010,35(1):62-74.[SHENG Haiyang. Zoigü basin loess origin in the Northeast Tibet plateau[J]. Earth Science, 2010, 35(1): 62-74]
[31] 鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比:红粘土风成成因的新证据[J].沉积学报,1999,2(2):226-232.[LU Huayu, AN Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese loess plateau[J]. Acta Sedimentologica Sinica, 1999, 2(2): 226-232]
[32] 高顺利. 天山乌鲁木齐河源冰债物与冰水沉积物的粒度特征[J]. 新疆大学学报(自然科学版), 1984, 10(4):75-83.[Gao Shunli. Particle size characters of till and glaciofluyial deposits at the head of Urumqi, Tian Shan[J]. Journal of Xinjiang University(Natural Science Edition), 1984, 10(4):75-83.
[33] 武安斌.托赖山“七一”冰川流域冰债石和冰水砾石的沉积组构分析[J].兰州大学学报,1983,27(3):127-139.[WU Anbin. The analysis of sedimentary fabric of morainic stones and fluvioglacial gravels of “7.1” glacial drainage Tuolaishan[J]. Journal of Lanzhou University, 1983, 27(3): 127-139]
[34] 冯志刚,王世杰,孙承兴,等.岩溶地区缺失原岩残余结构红色风化壳的粒度分布特征及成因指示--以贵州平坝为例[J].矿物学报,2002,22(3):243-248.[FENG Zhigang, WANG Shijie, SUN Chengxing, et al. Particle distribution of red weathering crust and its genetic implication-as exemplified by Pingba County of Guizhou, China[J]. Acta Mineralogica Sinica, 2002, 22(3): 243-248]
[35] 乔彦松,郭正堂,郝青振,等.皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J].科学通报,2003,48(13):1465-1469.[QIAO Yansong, GUO Zhengtang, HAO Qingzhen, et al. Loess-soil sequences in southern Anhui province: magentostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin, 2003, 48(13): 1465-1469]
[36] 张威,郭善莉,李永化,等.辽东半岛黄土粒度分维特征及其环境意义[J].地理科学进展,2010,29(1):79-86.[ZHANG Wei, GUO Shanli, LI Yonghua, et al. Grain-size Fractal Dimension of Loess and Its Environmental Significance in the Peninsula of East Liaoning[J]. Progress in Geography, 2010, 29(1): 79-86]
[37] 蒙仲举,王猛,高永,等.基于土壤粒度参数的荒漠草原地表粗粒化过程[J].水土保持研究,2017,24(6):22-28.[MENG Zhongju, WANG Meng, GAO Yong, et al. Soil coarse graining process based on surface grain size distribution in Xilamuren desert steppe[J]. Research of Soil and Water Conservation, 2017, 24(6): 22-28]
[38] 武安斌.冰碛物的粒度参数特征及其与沉积环境的关系[J].冰川冻土,1983,5(2):47-53.[WU Anbin. The characteristics of grain-size parameters of till and their relation to sedimentary environments[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 47-53]
[39] 党亚爱,李世清,王国栋,等.黄土高原典型土壤剖面土壤颗粒组成分形特征[J].农业工程学报,2009,25(9):74-78.[DANG Yaai, LI Shiqing, WANG Guodong, et al. Fractal characteristics of soil particle composition for typical types of soil profile on Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 74-78]
[40] 文星跃,黄成敏,黄凤琴,等.岷江上游河谷土壤粒径分形维数及其影响因素[J].华南师范大学学报(自然科学版),2011,43(1):80-86.[WEN Xingyue, HUANG Chengmin, HUANG Fengqin, et al. Fractal dimensions of soil particles and related affecting factors from the valley of upper Minjiang river[J]. Journal of South China Normal University(Natural Science Edition), 2011, 43(1): 80-86]
[41] 王丽娟,庞奖励,黄春长,等.关中东部TSG全新世剖面粒度分形特征及古气候意义[J].土壤通报,2012,43(1):1-5.[WANG Lijuan, PANG Jiangli, HUANG Chunchang, et al. Grain-size Fractal Characteristics of TSG Holocene Profile and Its Significance in Eastern Guanzhong[J]. Chinese Journal of Soil Science, 2012, 43(1): 1-5]
[42] 贾建军,高抒,薛允传.图解法与矩法沉积物粒度参数的对比[J].海洋与湖沼,2002,33(6):577-582.[JIA Jianjun, GAO Shu, XUE Yunchuan. Grain-size parameters derived from graphic and moment methods: a comparative study[J]. Oceanologia et Limnologia Sinica, 2002, 33(6): 577-582]
[43] OTTO B L, SCHNEIDER R, BRADY E C, et al. A comparison of PMIP2 model simulations and the MARGO proxy Reconstruction for tropical sea surface temperatures at last glacial maximum[J]. Climate Dynamics, 2009, 32(6): 799-815.
[44] MIX A C, BARD E, SCHNEIDER R, et al. Environmental processes of the ice age: land, oceans, glaciers(EPILOG)[J]. Quaternary Science Reviews, 20(4):627-657.
[45] KURAHASHI-NAKAMURA T, LOSCH M, PAUL A. Can sparse proxy data constrain the strength of the Atlantic meridional overturning circulation?[J]. Geoscientific Model Development, 2014, 7(1): 419-432.
[46] MUDELSEE M, SCHULZ M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka[J]. Earth and Planetary Science Letters, 1997, 151(1/2): 117-123.
[47] BERGER W H, YASUDA M K, BICKERT T, et al. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806[J]. Geology, 1994, 22(5): 463-467.
[48] JIAN Zhimim, ZHAO Quanhong, CHENG Xinrong, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2003, 193(3): 425-442.
[49] GUO Zhentang, LIU Dongsheng, FEDOROFF N, et al. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 1998, 18(3/4): 113-128.