[1]胡 实,韩 建,占车生*,等.基于地理加权回归模型的典型山地卫星反演降水产品降尺度研究[J].山地学报,2019,(03):451-461.[doi:10.16089/j.cnki.1008-2786.000437]
 HU Shi,HAN Jian,ZHAN Chesheng*,et al.Spatial Downscaling of Remotely Sensed Precipitation Using Geographically Weighted Regression Algorithms in Typical Mountainous Areas, China[J].Mountain Research,2019,(03):451-461.[doi:10.16089/j.cnki.1008-2786.000437]
点击复制

基于地理加权回归模型的典型山地卫星反演降水产品降尺度研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年03期
页码:
451-461
栏目:
山地技术
出版日期:
2019-07-20

文章信息/Info

Title:
Spatial Downscaling of Remotely Sensed Precipitation Using Geographically Weighted Regression Algorithms in Typical Mountainous Areas, China
文章编号:
1008-2786-(2019)3-451-11
作者:
胡 实1韩 建2占车生1*刘梁美子13
1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101; 2.中国电建集团西北勘测设计研究院有限公司,西安 710065; 3.中国科学院大学,北京 100049
Author(s):
HU Shi1 HAN Jian2 ZHAN Chesheng1* LIU Liangmeizi13
1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; 2.Powerchina Northwest Engineering Corporation Limited, Xian 710065, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
全球降水量测量计划 地理加权回归 降尺度 山地
Keywords:
global precipitation measurement mission geographically weighted regression downscaling algorithm mountainous area
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000437
文献标志码:
A
摘要:
降水是陆地水循环的关键变量,高分辨率降水数据的获取是准确模拟陆地水循环过程的前提。虽然卫星反演降水产品具有较强的空间代表性和连续性,但其空间分辨率较低的问题限制了它的应用。以太行山、横断山和喀斯特山区为研究对象,基于降水与高程(DEM)、植被指数(NDVI)之间存在较好相关关系的假设,构建了GPM降水(Global Precipitation Measurement Mission)与高程、植被指数的地理加权回归模型,得到了2014-2016年研究区1 km分辨率GPM降水数据。研究结果表明:地理加权回归模型能有效地提高GPM数据的空间分辨率。降尺度后,GPM数据精度在太行山和横断山区略有提高。年尺度上,相比于原始GPM数据,太行山和横断山区降尺度数据站点实测数据的确定系数分别提高了0.06和0.08,RMSE分别降低了0.45%和3.89%,MAE分别降低了0.16%和1.70%; 月尺度上,太行山区67%的月份,横断山区83%的月份GPM产品降尺度后更加接近于站点实测数据。喀斯特地区GPM数据降尺度后精度略有下降,降尺度后,年尺度的降雨数据与实测数据的RMSE和MAE分别增加了10.00%和8.00%,R2降低了0.06,月尺度上仅8月和9月降尺度后的精度更高。降雨与地形和NDVI的关系较弱是喀斯特地区降尺度效果较差的主要原因。
Abstract:
Precipitation is a key factor in terrestrial water cycle. The acquisition of high-resolution precipitation data is a prerequisite for simulating terrestrial water cycle with high precision. Although satellite-based precipitation has high spatial representativeness and continuousness, the relatively low spatial resolution in the product limits its applications in terrestrial hydrological simulations. Based on the assumption that there exists a strong correlation between precipitation, altitude and vegetation index, a Geographically Weighted Regression(GWR)model for the precipitation, elevation and vegetation index was developed, and the monthly and annual Global Precipitation Measurement Mission(GPM)data with 1-km resolution in three typical mountainous areas(i.e. Taihang mountainous area, Hengduan mountainous area and Kasite mountainous area)from 2014 to 2016 were obtained. The results showed that the GWR model could effectively enhanced the spatial resolution of the GPM data. The resolution of the GPM data slightly increased in Taihang mountainous area and Hengduan mountainous area after downscaling. At annual scale, after downscaling, the coefficient of determination(R2)between observed data and GPM increased by 0.06 and 0.08, the root-mean-square error(RMSE)decreased by 0.45% and 3.89%, and the mean absolute error(MAE)decreased by 0.16% and 1.70% in Taihang mountainous area and Hengduan mountainous area, respectively. At monthly scale, the downscaled precipitation was closer to the observed precipitation in more than 67% of the months in Taihang mountainous area and 83% of the months in Hengduan mountainous area. However, the resolution of the GPM data slightly degraded in Kasite mountainous area: at annual scale, the R2 decreased by 0.06, and the RMSE/MAE increased by 10.00%/8.00% after downscaling; at monthly scale, the downscaled precipitation showed higher precision than original GPM data only for August and September. The poor performance of the downscaling algorithm in Kasite mountainous area was mainly due to a weak correlation between precipitation, vegetation index and altitude.

参考文献/References:

[1] IMMERZEEL W W, RUTTEN M M, DROOGERS P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009, 113(2): 362-370.
[2] JIA Shaofeng, ZHU Wenbin, LU Aifeng, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011, 115(12): 3069-3079.
[3] DUAN Zheng, BASTIAANSSEN W. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure[J]. Remote Sensing of Environment, 2013, 131:1-13.
[4] FANG Jian, DU Juan, XU Wei, et al. Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area[J]. Advances in Water Resources, 2013, 61:42-50.
[5] 蔡明勇,吕洋,杨胜天,等.雅鲁藏布江流域TRMM降水数据降尺度研究[J].北京师范大学学报(自然科学版),2017,53(1):111-119.[CAI Mingyong, LYU Yang, YANG Shengtian, et al. TRMM precipitation downscaling in the data scarce Yarlungzangbo River basin[J]. Journal of Beijing Normal University(Natural Science), 2017, 53(1): 111-119]
[6] 马金辉,屈创,张海筱,等.2001-2010年石羊河流域上游TRMM降水资料的降尺度研究[J].地理科学进展,2013,32(9):1423-1432.[MA Jinhui, QU Chuang, ZHANG Haixiao, et al. Spatial downscaling of TRMM precipitation data based on DEM in the upstream of Shiyang River Basin during 2001-2010[J]. Progress in Geography, 2013, 32(9): 1423-1432]
[7] 李净,张晓.TRMM降水数据的空间降尺度方法研究[J].地理科学,2015,35(9):1164-1169.[LI Jing, ZHANG Xiao. Downscaling method of TRMM satellite precipitation data[J]. Scientia Geographica Sinica, 2015, 35(9): 1164-1169]
[8] ALEXAKIS D D, TSANIS I K. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data[J]. Environmental Earth Sciences, 2016, 75(14): 1-13.
[9] 樊东,薛华柱,董国涛,等.基于二次多项式回归模型的黑河流域TRMM数据降尺度研究[J].水土保持研究,2017,24(2):146-151.[FAN Dong, XUE Huazhu, DONG Guotao, et al. Downscaling study on TRMM 3B43 data of the Heihe river basin based on quadratic polynomial regression model[J]. Research of Soil and Water Conservation, 2017, 24(2): 146-151]
[10] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted regression-modelling spatial non-stationarity[J]. Journal of the Royal Statistical Society, 1998, 47:431-443.
[11] FOODY G M. Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI-rainfall relationship[J]. Remote Sensing of Environment, 2003, 88(3): 283-293.
[12] 王宇航,赵鸣飞,康慕谊,等.黄土高原地区NDVI与气候因子空间尺度依存性及非平稳性研究[J].地理研究,2016,35(3):493-503.[WANG Yuhang, ZHAO Mingfei, KANG Muyi, et al. Spatial scale-dependent and non-stationarity relationships between NDVI and climatic factors in the Loess Plateau[J]. Geographical Research, 2016, 35(3): 493-503]
[13] CHEN Fengrui, LIU Yu, LIU Qiang, et al. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity[J]. International Journal of Remote Sensing, 2014, 35(9): 3074-3093.
[14] CHEN Cheng, ZHAO Shuhe, DUAN Zheng, et al. An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9, SI): 4592-4604.
[15] XU Shiguang, WU Chaoyang, WANG Li, et al. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 2015, 162:119-140.
[16] 王飞宇,占车生,胡实,等.典型山地蒸散发时空变化模拟研究[J].资源科学,2017,39(2):276-287.[WANG Feiyu, ZHAN Chesheng, HU Shi, et al. Simulation of spatio-temporal changes in evapotranspiration in typical mountains[J]. Resources Science, 2017, 39(2): 276-287]
[17] 韩建,占车生,王飞宇,等.太行山区降水空间扩展方法与垂直地带性分析[J].山地学报,2017,35(6):761-768.[HAN Jian, ZHAN Chesheng, WANG Feiyu, et al. Comparison of the methods of precipitation spatial expansion and analysis of vertical zonality in the Taihang mountains[J]. Mountain Research, 2017, 35(6): 761-768]
[18] 张涛,李宝林,何元庆,等.基于TRMM订正数据的横断山区降水时空分布特征[J].自然资源学报,2015,30(2):260-270.[ZHANG Tao, LI Baolin, HE Yuanqing, et al. Spatial and temporal distribution of precipitation based on corrected TRMM data in Hengduan mountains[J]. Journal of Natural Resources, 2015, 30(2): 260-270]
[19] HOU A Y, KAKAR R K, NEECK S, et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2014, 95(5): 701-722.
[20] 唐国强,万玮,曾子悦,等.全球降水测量(GPM)计划及其最新进展综述[J].遥感技术与应用,2015,30(4):607-615.[TANG Guoqiang, WAN Wei, ZENG Ziyue, et al. An overview of the Global Precipitation Measurement(GPM)Mission and it's latest development[J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615]
[21] 马士彬,安裕伦,杨广斌.基于GIS的喀斯特区域不同岩性基底植被NDVI变化分析[J].水土保持研究,2017,24(2):202-206.[MA Shibin, AN Yulun, YANG Guangbin. Analysis of vegetable NDVI variation on various lithology in Karst area based on GIS[J]. Research of Soil and Water Conservation, 2017, 24(2): 202-206]
[22] 肖建勇,王世杰,白晓永,等.喀斯特关键带植被时空变化变化及其驱动因素[J].生态学报,2018,38(24):8799-8812.[XIAO Jianyong, WANG Shijie, BAI Xiaoyong, et al. Determinants and spatial-temporal evolution of vegetation coverage in the Karst critical zone of South China[J]. Acta Ecologica Sinica, 2018, 38(24): 8799-8812]

相似文献/References:

[1]高江波,王 欢.基于GWR模型的喀斯特地区产流量与土壤侵蚀权衡的时空特征--以贵州省三岔河流域为例[J].山地学报,2019,(04):518.[doi:10.16089/j.cnki.1008-2786.000444]
 GAO Jiangbo*,WANG Huan.Spatio-temporal Tradeoff of Karst Water Yield and Soil Erosion Based on GWR Model: A Case Study in Sancha River Basin of Guizhou Province, China[J].Mountain Research,2019,(03):518.[doi:10.16089/j.cnki.1008-2786.000444]
[2]侯秀英,黄 菲,赵 青,等.福建省森林丧失的时空格局演化及其驱动力机制[J].山地学报,2020,(6):829.[doi:10.16089/j.cnki.1008-2786.000559]
 HOU Xiuying,HUANG Fei,ZHAO Qing,et al.Spatial-Temporal Pattern Evolution and DrivingMechanism of Forest Loss in Fujian Province, China[J].Mountain Research,2020,(03):829.[doi:10.16089/j.cnki.1008-2786.000559]
[3]米丹丹a,斯琴朝克图a,b,等.蒙东地区乡村聚落空间演变特征及其影响因素[J].山地学报,2023,(6):863.[doi:10.16089/j.cnki.1008-2786.000793]
 MI Dandana,SIQIN Chaoketua,b,et al.Spatial Evolution and Influencing Factors of Rural Settlements in Eastern Inner Mongolia, China[J].Mountain Research,2023,(03):863.[doi:10.16089/j.cnki.1008-2786.000793]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-01-04; 改回日期(Accepted date): 2019-06-04
基金项目(Foundation item):国家重点基础研究发展计划(973计划)项目(2015CB452701); 国家自然科学基金项目(41571019,51779009)。[National Key Basic Research and Development Program of China(973Program)(2015CB452701); National Natural Science Foundation of China(41571019,51779009)]
作者简介(Biography):胡实(1982-),女,湖北咸宁人,博士,助理研究员,主要从事生态水文研究。[HU Shi(1982-), female, born in Xianning, Hubei province, Ph.D. assistant professor, research on ecohydrology] E-mail:hus.08b@igsnrr.ac.cn
*通讯作者(Corresponding author):占车生(1975-),男,湖北黄冈人,博士,研究员,主要从事流域水循环模拟研究。[ZHAN Chesheng(1975-), male, born in Huanggang, Hubei province, Ph.D. professor, specialized in water cycle simulation of river basin] E-mail: zhancs@igsnrr.ac.cn
更新日期/Last Update: 2019-05-30