[1]徐青松,刘兴荣,王东坡*,等.基于遗传算法的反倾层状岩质边坡极限分析上限解[J].山地学报,2019,(02):295-302.[doi:10.16089/j.cnki.1008-2786.000423]
 XU Qingsong,LIU Xingrong,WANG Dongpo*,et al.Upper Bound Limit Analysis of Counter-Tilted Rock Slope Based on Genetic Algorithm[J].Mountain Research,2019,(02):295-302.[doi:10.16089/j.cnki.1008-2786.000423]
点击复制

基于遗传算法的反倾层状岩质边坡极限分析上限解()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年02期
页码:
295-302
栏目:
山地技术
出版日期:
2019-04-25

文章信息/Info

Title:
Upper Bound Limit Analysis of Counter-Tilted Rock Slope Based on Genetic Algorithm
文章编号:
1008-2786-(2019)2-295-08
作者:
徐青松12刘兴荣3王东坡4*欧阳朝军1
1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.中国科学院大学,北京 100049; 3.甘肃省科学院 地质自然灾害防治研究所,兰州730000; 4. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室, 成都 610059
Author(s):
XU Qingsong12LIU Xingrong3WANG Dongpo4*OUYANG Chaojun1
1.Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.Gansu Academy of Sciences, Lanzhou 730000, China; 4.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
关键词:
反倾岩质边坡 极限分析上限解 遗传算法 最优折断面
Keywords:
counter-tilted rock slope upper bound limit analysis genetic algorithm optimal fracture
分类号:
TU457
DOI:
10.16089/j.cnki.1008-2786.000423
文献标志码:
A
摘要:
倾倒破坏是反倾层状边坡主要的失稳类型之一,而当反倾层状边坡内存在软弱夹层、外倾结构面等因素时,传统的纯剪断或纯折断破坏将不再适用,如何有效地建立一种该类型边坡的稳定性分析方法对边坡工程设计显得尤为重要。在此基础上,本文针对反倾层状岩质边坡平动-转动组合破坏问题,利用塑性极限分析上限定理,结合相关联流动法则和变形协调条件建立容许运动场,构建考虑平动加转动的岩质边坡稳定性极限分析理论计算模型,进一步采用遗传优化算法进行全局极值搜索,得到基于遗传算法的平动加转动岩质边坡极限分析稳定性系数上限解和相应的最优折断面。采用该方法与改进的Goodman-Bray方法进行对比,计算结果表明所提方法具有一定的适用性。同时利用该方法,对反倾岩质边坡的稳定性影响因素进行了敏感性分析。
Abstract:
Toppling failure is one of the main instability types of anti-dip layered slope. Nevertheless, when anti-dip layered slope contains weak interlayer, extroversion structural plane and others, pure shear model or pure fracture failure model will not be applicable. On the contrary, it is important to establish a simple and reasonable method to analyse the stability of anti-dip slope stability for slope engineering design. The failure model with the motion of translation and rotation simultaneously occurs in counter-tilted rock slope. However, it remains unclear how the geomechanical model is established. Firstly, the upper bound theory of plastic limit analysis was used to establish the admissible motion field by combining the related flow rule and the compatibility condition of deformation. Based on the condition that the external force power was equal to the internal energy loss rate in the plastic deformation zone, the virtual power equation was then established. In addition, the objective function of slope stability was obtained by strength reduction. The genetic optimization algorithm was furtherly used in order to obtain upper bound solution and optimal fracture surface through an extremum searching. Thus, a genetic algorithm based upper bound method for limit analysis of rock slope with translational and rotational motion was proposed. Our results demonstrate that the proposed method is reasonable and efficient compared to Goodman-Bray solution. Meanwhile, the proposed approach in this paper was implemented to analyse the parameter sensitivity of slope stability.

参考文献/References:

[1] GOODMAN R E. Methods of geological engineering in discontinuous rocks[M]. New York: West Publishing Company, 1976: 300-368.
[2] 陈祖煜,张建红,汪小刚. 岩石边坡倾倒稳定分析的简化方法[J]. 岩土工程学报, 1996,18(6):96-99. [CHEN Zuyi, ZHANG Jianhong, WANG Xiaogang. Simplified method for analysis of toppling stability of rock slope[J]. Chinese Journal of Geotechnical Engineering, 1996,18(6):96-99]
[3] 陈红旗,黄润秋. 反倾层状边坡弯曲折断的应力及挠度判据[J]. 工程地质学报, 2004,12(3):243-246.[CHEN Hongqi, HUANG Runqiu. Stress and flexibility criteria of bending and breaking in a countertendency layered slope[J]. Journal of Engineering Gelogy, 2004, 12(3): 243-246]
[4] 位伟,段绍辉,姜清辉,等.反倾边坡影响倾倒稳定的几种因素探讨[J].岩土力学,2008,29(z1):431-434.[WEI Wei, DUAN Shaohui, JIANG Qinghui, et al. Research on some factors influencing the toppling stability in anti-inclined slope[J]. Rock and Soil Mechanics, 2008,29(z1):431-434]
[5] 张以晨,佴磊,沈世伟,等. 反倾层状岩质边坡倾倒破坏力学模型[J]. 吉林大学学报(地球科学版),2011,41(S1):207-213. [ZHANG Yichen, NAI Lei, SHEN Shiwei, et al. Mechanical models of anti-dip layered rock slope toppling failure[J]. Journal of Jilin University( Earth Science Edition), 2011, 41(S1): 207-213]
[6] 卢海峰, 刘泉声, 陈从新. 反倾岩质边坡悬臂梁极限平衡模型的改进[J]. 岩土力学, 2012, 33(2): 577-584. [LU Haifeng, LIU Quansheng, CHEN Congxin. Improvement of cantilever beam limit equilibrium model of counter-tilt rock slopes[J]. Rock and Soil Mechanics, 2012, 33(2):577-584]
[7] 陈惠发. 极限分析与土体塑性[M]. 北京:人民交通出版社,1995:3-7,28-60. [CHEN Huifa. Limit analysis and soil plasticity[M]. Beijing: China Communications Press, 1995: 3-7,28-60]
[8] 杨小礼. 用于岩土极限分析的非线性能量耗散理论[J]. 中南大学学报自然科学版,2005,36(4):710-714.[YANG Xiaoli. Nonlinear energy dissipation theory for limit analysis in geotechnical engineering[J]. Journal of Central South University(Science and Technology), 2005, 36(4):710-714]
[9] ALEJANO L R, GÓMEZ-MÁRQUEZ I, MARTÍNEZ-ALEGRÍA R. Analysis of a complex toppling-circular slope failure[J]. Engineering Geology, 2010, 114(1-2): 93-104.
[10] 王东坡,何思明, 欧阳朝军, 等. 地震荷载下边坡破裂面形状及其稳定性判识[J]. 兰州大学学报(自然科学版), 2011, 47(6): 13-17. [WANG Dongpo, HE Siming, OUYANG Chaojun,et.al. Surface and shape of slope fracture under seismic load and determination of its stability [J]. Journal of Lanzhou University(Natural Sciences), 2011, 47(6): 13-17]
[11] 赵炼恒,罗强,李亮,等. 层状岩体边坡动态稳定性拟静力上限分析[J]. 岩土力学,2010,31(11):3627-3634. [ZHAO Lianheng, LUO Qiang, LI Liang, et al. Upper bound quasi-static analysis of dynamic stability of layered rock slopes[J]. Rock and Soil Mechanics, 2010, 31(11): 3627-3634]
[12] 王云岗,熊凯,凌道盛. 基于平动加转动运动场的边坡稳定上限分析[J]. 岩土力学,2010,31(8):2619-2624, 2665. [WANG Yungang, XIONG Kai, LING Daosheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. Rock and Soil Mechanics, 2010, 31(8):2619-2624, 2665]
[13] 伍法权. 云母石英片岩斜坡弯曲倾倒变形的理论分析[J]. 工程地质学报,1997,5(4):19-24. [WU Faquan. Theoretical analysis of bending and toppling deformation of mica quartz schist slope[J]. Journal of Engineering Geology, 1997, 5(4): 19-24]
[14] 王根龙,伍法权,祁生文,等. 加锚岩质边坡稳定性评价的极限分析上限法研究[J]. 岩石力学与工程学报,2007,26(12): 2556-2563. [WANG Genlong, WU Faquan, QI Shengwen, et al. Research on limit analysisi upper bound method for stability evaluation of anchored rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2556-2563]
[15] 唐芬,郑颖人,赵尚毅. 土坡渐进破坏的双安全系数讨论[J]. 岩石力学与工程学报,2007,26(7):1402-1407. [TANG Fen, ZHENG Yingren, ZHAO Shangyi. Discussion on two safety factors for progressive failure of soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1402-1407]
[16] YUAN Wei, BAI Bing, LI Xiaochun, et al. A strength reduction method based on double reduction parameters and its application[J]. Journal of Central South University, 2013, 20(9): 2555-2562.
[17] BAI Bing, YUAN Wei, LI Xiaochun. A new double reduction method for slope stability analysis[J]. Journal of Central South University, 2014, 21(3): 1158-1164.
[18] 弥宏亮,陈祖煜. 遗传算法在确定边坡稳定最小安全系数中的应用[J]. 岩土工程学报,2003,25(6):671-675. [MI Hongliang, CHEN Zhuyi. Genetic algorithm used in determining the global minimum factor of safety of slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,25(6):671-675]
[19] AYDAN A Ö, KAWAMOTO P T. The stability of slopes and underground openings against flexural toppling and their stabilisation[J]. Rock Mechanics and Rock Engineering, 1992, 25(3): 143-165.
[20] ADHIKARY D P, DYSKIN A V, JEWELL R J, et al. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering, 1997, 30(2): 75-93.
[21] ADHIKARY D P, DYSKIN A V. Modelling of Progressive and Instantaneous Failures of Foliated Rock Slopes[J]. Rock Mechanics and Rock Engineering, 2007, 40(4): 349-362.
[22] 程东幸,刘大安,丁恩保,等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报,2005,27(11):127-131. [CHENG Dongxing, LIU Da'an, DING Enbao, et al. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 127-131]
[23] 李明霞,董联杰. 层状反倾边坡变形特征及影响因素分析[J]. 计算力学学报,2015,32(6):831-837. [LI Mingxia, DONG Lianxia. Analysis of Deformation Characteristics and Influencing Factors of Layered Anti-dip Slope[J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 831-837]
[24] 韩贝传,王思敬. 边坡倾倒变形的形成机制与影响因素分析[J]. 工程地质学报,1999,7(3):213-217. [HAN Beichuan, WANG Sijing. Analysis of formation mechanism and influencing factors of slope tilting deformation[J]. Journal of Engineering Geology, 1999, 7(3): 213-217]
[25] 左保成,陈从新,刘小巍,等. 反倾岩质边坡破坏机理模型试验研究[J]. 岩石力学与工程学报,2005,24(19):107-113. [ZUO Baocheng, CHEN Congxin,LIU Xiaowei, et al. Modeling experiment study on failure mechanism of counter-tilt rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 107-113]

备注/Memo

备注/Memo:
收稿日期(Received date):2018-06-21; 改回日期(Accepted data):2019-02-07
基金项目(Foundation item):国家重点研发计划(2017YFC1501003); 甘肃省科学院与中科院合作项目(2017HZ-03); 四川省教育厅科技计划项目(18ZA0043)。 [National Key R&D Program of China(2017YFC1501003); Cooperation Project Between Gansu Academic and Chinese Academic Science(2017HZ-03); The Projects of the Sichuan Department of Education(18ZA0043)]
作者简介(Biography):徐青松(1993-),男,四川宣汉人,硕士研究生,主要研究方向:山地灾害数值模拟。[XU Qingsong(1993-),male, born in Yibin, Sichuan Province, M.Sc. candidate, research on numeric simulation of mountain disaster] E-mail: 1342071344@qq.com
*通讯作者(Corresponding author):王东坡(1984-),男,甘肃天水人,副教授,主要研究方向:山地灾害机制分析及防治。[WANG Dongpo(1984-),male, born in Tianshui, Gansu Province, associate professor, research on mechanism and mitigation technology of mountain disaster] E-mail: wangdongpo2014@cdut.edu.cn
更新日期/Last Update: 2019-03-30