[1]张 军,刘 婷,李安迪,等.不同苔藓斑块对亚高山针叶林土壤呼吸和有机碳累积的影响[J].山地学报,2019,(01):21-29.[doi:10.16089/j.cnki.1008-2786.000395]
 ZHANG Jun,LIU Ting,LI Andi,et al.Effects of Different Moss Patches on Soil Respiration and Organic Carbon Accumulation in Subalpine Coniferous Forests[J].Mountain Research,2019,(01):21-29.[doi:10.16089/j.cnki.1008-2786.000395]
点击复制

不同苔藓斑块对亚高山针叶林土壤呼吸和有机碳累积的影响()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年01期
页码:
21-29
栏目:
山地环境
出版日期:
2019-03-10

文章信息/Info

Title:
Effects of Different Moss Patches on Soil Respiration and Organic Carbon Accumulation in Subalpine Coniferous Forests
文章编号:
1008-2786-(2019)1-021-09
作者:
张 军12 刘 婷3 李安迪12 孙守琴1*
1. 中国科学院、水利部成都山地灾害与环境研究所, 成都610041; 2. 中国科学院大学, 北京100049; 3.四川师范大学 生命科学学院, 成都610101
Author(s):
ZHANG Jun12 LIU Ting3 LI Andi12 SUN Shouqin1*
1. Institute of Mountain Hazards and Environment, CAS, Chengdu 610014, China; 2. University of Chinese Academy of Sciences,Beijing 100049, China; 3.College of Life Science, Sichuan Normal University, Chengdu 610101, China;
关键词:
贡嘎山 苔藓斑块 土壤呼吸 土壤有机碳
Keywords:
the Gongga Mountain bryophyte patches soil respiration soil organic carbon
分类号:
X173
DOI:
10.16089/j.cnki.1008-2786.000395
文献标志码:
A
摘要:
苔藓植物作为森林生态系统最常见的地被植物之一,对生态过程起着重要调控作用。为探明不同苔藓植物对亚高山生态系统碳循环过程的影响,本文以封闭式动态气室法,对川西贡嘎山东坡峨眉冷杉生态系统赤茎藓(Pleuroziu schreberi)和星塔藓(Hylocomiastrum pyrenaicum)两种苔藓斑块土壤以及裸地斑块土壤CO2排放速率进行了定位观测,同时探讨了不同苔藓斑块对土壤有机碳累积的影响及潜在途径。结果显示:(1)苔藓植物显著改变了亚高山针叶林土壤CO2排放速率及其季节变化特征,但不同苔藓植物的影响程度具有差异:赤茎藓和星塔藓作用下土壤CO2排放速率分别增加了28.5%和46.8%,星塔藓与赤茎藓相比其对土壤CO2排放的促进作用更显著;(2)苔藓斑块对土壤有机碳(SOC)和溶解性有机碳(DOC)的影响具有物种特异性,两种苔藓中,赤茎藓能够显著促进SOC和DOC累积,但星塔藓的影响不显著。该结果反映了亚高山生态系统不同苔藓物种在促进生态系统碳循环方面的生态功能的差异,由此,在开展亚高山生态系统碳循环以及土壤有机碳储量研究时,应充分考虑苔藓物种对土壤碳过程/碳平衡的作用机制和生态功能差别。
Abstract:
Bryophytes are one of the dominating vegetative communities in the bottom layer of subalpine and other related ecosystems, and play an important role in regulating ecological processes. In this study, carbon dioxide(CO2)emission rates from bare soil, bryophytes Pleuroziu schreberi- and Hylocomiastrum pyrenaicum-covered soils were investigated in a subalpine coniferous forest in the Gongga Mountain, western Sichuan, China, in order to reveal the roles of bryophyte patches in regulating soil C cycling processes. And then it compared the accumulation of soil organic carbon(SOC)in the mentioned soils. Results suggested that bryophyte patches significantly increased CO2 emission rates, with an increase of CO2 emission rates 28.5% and 46.8% in the P. schreberi- and H. pyrenaicum-covered soils, respectively, than one in bare soil. Compared with bryophyte-covered soils, the bare soil had a larger seasonal variation in CO2 emission rates. Accumulation of SOC and dissolved organic carbon(DOC)were promoted by P. schreberi but not by H. pyrenaicum, suggesting a species-specific impact of bryophyte patches on these parameters. The results demonstrate the different ecological roles of bryophyte species in regulating C cycling in subalpine forest ecosystems, which should be included into the modelling of carbon cycling in advanced research.

参考文献/References:

[1] 方精云,王娓. 作为地下过程的土壤呼吸:我们了解多少?[J]. 植物生态学报,2007,31(3):345-347. [FANG Jingyun, WANG Wei. Soil respiration as a key belowground process: issues and perspectives [J]. Journal of Plant Ecology, 2007,31(3):345-347]
[2] 张元媛,朱万泽,孙向阳,等. 川西贡嘎山峨眉冷杉成熟林生态系统CO2通量特征 [J]. 生态学报,2018,38(17):6125-6135. [ZHANG Yuanyuan, ZHU Wanze, SUN Xiangyang, et al. Carbon dioxide flux characteristics in an Abies fabri mature forest on Gongga Mountain, Sichuan, China [J]. Acta Ecologica Sinica, 2018, 38(17):6125-6135]
[3] 杨玉盛,董彬,谢锦升. 森林土壤呼吸及其对全球变化的响应[J]. 生态学报,2004,24(3):583-591.[YANG Yusheng, DONG Bin, XIE Jinsheng. Soil respiration of forest ecosystem and its respondence to global change [J]. China Acta Ecologica Sinica, 2004, 24(3):583-591]
[4] PALTA J A, NOBEL P S. Influences of water status, temperature, and root age on daily patterns of root respiration for two cactus species [J]. Annals of Botany, 1989, 63(6):651-662.
[5] JACKSON R B, COOK C W, PIPPEN J S. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest [J]. Ecology, 2009, 90(12): 3352-3366.
[6] ZHOU Xuhui, SHERRY R A, LUO Yiqi, et al. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem [J].Global Biogeochemical Cycles, 2006, 20(1):1-12.
[7] LAGANIERE J, PARE D, BERGERON Y, et al. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality [J]. Soil Biology Biochemistry, 2012, 53:18-27.
[8] SEDIAE GEHRENGELD J G. Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands [J]. Oecologia, 2005, 144(1): 137-147.
[9] CANNONE N, BINELLI G, WORLAND R, et al. CO2 fluxes among different vegetation types during the growing season in Marguerite Bay(Antarctic peninsula)[J]. Geoderma, 2012, 189: 595-605.
[10] SUN Shouqin, LIU Tao, WU Yanhong, et al. Ground bryophytes regulate net soil carbon efflux: evidence from two subalpine ecosystems on the east edge of the Tibet Plateau [J]. Plant and Soil, 2017, 417(1-2):363-375.
[11] SUN Shouqin, WU Yanhong, WANG Genxu, et al. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China [J]. Plos One, 2013, 8(3):1-10.
[12] 雷波,包维楷. 6种人工针叶幼林下地表苔藓植物层片的物种多样性与结构特征[J].植物生态学报,2004,28(5):594-600 [LEI Bo, BAO Weikai. Ground bryophyte composition and synusia structure under six types of young coniferous forest plantations in the upper Minjiang River [J]. Journal of Plant Ecology, 2004, 28(5):594-600]
[13] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J].Soil Biology and Biochemistry, 1987, 19(6):703-707.
[14] LUO Yiqi, WAN Shiqiang, HUI Dafeng, et al. Acclimatization of soil respiration to warming in a tall grass prairie [J]. Nature, 2001, 413(6856):622-625.
[15] SAIZ G, BYRNE K A, KIESE R, et al. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland [J]. Global Change Biology, 2006, 12(6):1007-1020.
[16] SWANSON R V, FLANAGAN L B. Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem [J]. Agricultural and Forest Meteorology, 2001, 108(3):165-181.
[17] DELUCIA E H, TUMBULL M H, WALCROFT A, et al. The contribution of bryophytes to the carbon exchange for a temperate rainforest [J]. Global Chang Biollogy, 2003, 9(8): 1158-1170.
[18] BOTTING R S, FREDEEN A L. Net ecosystem CO2 exchange for moss and lichen dominated forest floors of old-growth subboreal spruce forests in central British Columbia [J]. Forest Ecology and Management, 2006, 235(1-3): 240-251.
[19] KAPPEN L. Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state [J]. Antarctic Science, 1989, 1(1): 31-34.
[20] BERINGER J, LYNCH A H, CHAPIN F S, et al. The representation of arctic soils in the land surface model: the importance of mosses [J]. Journal of Climate, 2001, 14(15): 3324-3335.
[21] PANNEWITZ S, GREEN G A, SCHLENSOG M, et al. Photosynthetic performance of Xanthoria mawsonii C.W. Dodge in coastal habitats, Ross Sea region, continental Antarctica [J]. Lichenologist, 2006, 38(1): 67-81.
[22] ORWIN K H, OSTLE N J. Moss species effects on peatland carbon cycling after fire [J]. Functional Ecology, 2012, 26(4): 829-836.
[23] JACKSON B G, NILSSON M C, WARDLE D A. The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence [J]. Plant and Soil, 2013, 367(1-2): 199-214.
[24] ZINSMEISTER H D, BECKER H, EICHER T. Bryophytes, a source of biologically-active, naturally-occurring material [J]. Angewandte Chemie-International Edition in English, 1991, 30(2):130-147.
[25] TURETSKY M R. The role of bryophytes in carbon and nitrogen cycling [J]. Bryologist, 2003, 106(3): 395-409.
[26] BUDGE K, LEIFELD J, EGLI M, et al. Soil microbial communities in(sub)alpine grasslands indicate a moderate shift towards new environmental conditions 11 years after soil translocation [J]. Soil Biology and Biochemistry, 2011, 43(11):48-54.
[27] YANG Jisong, ZHANG Chao, LI Yunzhao, et al. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China [J]. Science of the Total Environment, 2018, 642(1-2): 946-953.
[28] COXSON D S, MCINTYRE D D, VOGEL H J, et al. Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest Guadeloupe French West Indies [J]. Biotropica, 1992, 24(2): 121-133.
[29] WILSON J A, COXSON D S. Carbon flux in a subalpine spruce-fir forest: pulse release from Hylocomium splendens feather–moss mats [J]. Canadian Journal of Botany, 1999, 77(4): 564-569.
[30] WOODIN S J, SOMMERKORN M, GORNALL J L, et al. Differential allocation of carbon in mosses and grasses governs ecosystem sequestration: a 13C tracer study in the high Arctic [J]. New Phytologist, 2009, 184(4): 944-949.
[31] LANGS I, CORNELISSENJ H C, KLAHN T, et al. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species [J]. Journal of Ecology, 2009, 97(5): 886-900.
[32] JACKSON B G, NILSSON M C, WARDLE D A. The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence [J]. Pant and Soil, 2013, 367(1-2): 199-214.
[33] GAUMONT G D, BLACK T A, BARR A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand [J]. Tree Physiology, 2008, 28(2): 161-171.

相似文献/References:

[1]周俊,吴艳宏.贡嘎山海螺沟水化学主离子特征及其控制因素[J].山地学报,2012,(03):378.
 ZHOU Jun,WU Yanhong.Major Ion Chemistry of Waters in Hailuogou Catchment and the Possible Controls[J].Mountain Research,2012,(01):378.
[2]吕儒仁.贡嘎山东坡和北坡的山地灾害[J].山地学报,1991,(02):131.
[3]吕儒仁.一场典型的冰雪雨水泥石流过程[J].山地学报,1992,(02):89.
[4]李逊,熊尚发.贡嘎山海螺沟冰川退却迹地植被原生演替[J].山地学报,1995,(02):109.
[5]程根伟.贡嘎山极高山区的降水分布特征探讨[J].山地学报,1996,(03):177.
[6]罗辑.贡嘎山东坡植被原生演替的种间协变[J].山地学报,1996,(04):223.
[7]罗辑,赵义海,李林峰.贡嘎山东坡峨眉冷杉林C循环的初步研究[J].山地学报,1999,(03):59.
[8]杨清伟,程根伟,罗辑,等.贡嘎山东坡亚高山森林系统植被光合作用——双裂蟹甲草(Cacalia davidii)净光合速率对生态因子的响应[J].山地学报,2001,(02):115.
[9]钟祥浩,罗辑.贡嘎山山地暗针叶林带自然与退化生态系统生态功能特征[J].山地学报,2001,(03):201.
[10]周杨明,程根伟,杨清伟.贡嘎山东坡亚高山森林区蒸散力的估算[J].山地学报,2002,(02):135.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-07-30; 改回日期(Accepted date): 2019-01-09
基金项目(Foundation item):国家自然科学基金(41473078; 41273096)。[National Natural Science Foundation of China(41473078; 41273096)]
作者简介(Biography):张军(1994-), 男, 硕士研究生, 山东临沂, 从事高山植物对气候变化响应的研究。[ZHANG Jun(1994-), male, M.Sc. candidate, born in LinYi, Shandong Province, engaged in alpine plants response to climate change research]E-mail: zhangjun171@mails.ucas.ac.cn
*通讯作者(Corresponding author):孙守琴, 女, 博士, 副研究员,从事高山生态系统对气候变化的响应研究。[SUN Shouqin, Female, Ph.D., associate professor, engaged in alpine ecosystem response to climate change research] E-mail:shouqinsun@imde.ac.cn
更新日期/Last Update: 2019-01-30