参考文献/References:
[1] 方精云,王娓. 作为地下过程的土壤呼吸:我们了解多少?[J]. 植物生态学报,2007,31(3):345-347. [FANG Jingyun, WANG Wei. Soil respiration as a key belowground process: issues and perspectives [J]. Journal of Plant Ecology, 2007,31(3):345-347]
[2] 张元媛,朱万泽,孙向阳,等. 川西贡嘎山峨眉冷杉成熟林生态系统CO2通量特征 [J]. 生态学报,2018,38(17):6125-6135. [ZHANG Yuanyuan, ZHU Wanze, SUN Xiangyang, et al. Carbon dioxide flux characteristics in an Abies fabri mature forest on Gongga Mountain, Sichuan, China [J]. Acta Ecologica Sinica, 2018, 38(17):6125-6135]
[3] 杨玉盛,董彬,谢锦升. 森林土壤呼吸及其对全球变化的响应[J]. 生态学报,2004,24(3):583-591.[YANG Yusheng, DONG Bin, XIE Jinsheng. Soil respiration of forest ecosystem and its respondence to global change [J]. China Acta Ecologica Sinica, 2004, 24(3):583-591]
[4] PALTA J A, NOBEL P S. Influences of water status, temperature, and root age on daily patterns of root respiration for two cactus species [J]. Annals of Botany, 1989, 63(6):651-662.
[5] JACKSON R B, COOK C W, PIPPEN J S. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest [J]. Ecology, 2009, 90(12): 3352-3366.
[6] ZHOU Xuhui, SHERRY R A, LUO Yiqi, et al. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem [J].Global Biogeochemical Cycles, 2006, 20(1):1-12.
[7] LAGANIERE J, PARE D, BERGERON Y, et al. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality [J]. Soil Biology Biochemistry, 2012, 53:18-27.
[8] SEDIAE GEHRENGELD J G. Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands [J]. Oecologia, 2005, 144(1): 137-147.
[9] CANNONE N, BINELLI G, WORLAND R, et al. CO2 fluxes among different vegetation types during the growing season in Marguerite Bay(Antarctic peninsula)[J]. Geoderma, 2012, 189: 595-605.
[10] SUN Shouqin, LIU Tao, WU Yanhong, et al. Ground bryophytes regulate net soil carbon efflux: evidence from two subalpine ecosystems on the east edge of the Tibet Plateau [J]. Plant and Soil, 2017, 417(1-2):363-375.
[11] SUN Shouqin, WU Yanhong, WANG Genxu, et al. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China [J]. Plos One, 2013, 8(3):1-10.
[12] 雷波,包维楷. 6种人工针叶幼林下地表苔藓植物层片的物种多样性与结构特征[J].植物生态学报,2004,28(5):594-600 [LEI Bo, BAO Weikai. Ground bryophyte composition and synusia structure under six types of young coniferous forest plantations in the upper Minjiang River [J]. Journal of Plant Ecology, 2004, 28(5):594-600]
[13] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J].Soil Biology and Biochemistry, 1987, 19(6):703-707.
[14] LUO Yiqi, WAN Shiqiang, HUI Dafeng, et al. Acclimatization of soil respiration to warming in a tall grass prairie [J]. Nature, 2001, 413(6856):622-625.
[15] SAIZ G, BYRNE K A, KIESE R, et al. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland [J]. Global Change Biology, 2006, 12(6):1007-1020.
[16] SWANSON R V, FLANAGAN L B. Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem [J]. Agricultural and Forest Meteorology, 2001, 108(3):165-181.
[17] DELUCIA E H, TUMBULL M H, WALCROFT A, et al. The contribution of bryophytes to the carbon exchange for a temperate rainforest [J]. Global Chang Biollogy, 2003, 9(8): 1158-1170.
[18] BOTTING R S, FREDEEN A L. Net ecosystem CO2 exchange for moss and lichen dominated forest floors of old-growth subboreal spruce forests in central British Columbia [J]. Forest Ecology and Management, 2006, 235(1-3): 240-251.
[19] KAPPEN L. Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state [J]. Antarctic Science, 1989, 1(1): 31-34.
[20] BERINGER J, LYNCH A H, CHAPIN F S, et al. The representation of arctic soils in the land surface model: the importance of mosses [J]. Journal of Climate, 2001, 14(15): 3324-3335.
[21] PANNEWITZ S, GREEN G A, SCHLENSOG M, et al. Photosynthetic performance of Xanthoria mawsonii C.W. Dodge in coastal habitats, Ross Sea region, continental Antarctica [J]. Lichenologist, 2006, 38(1): 67-81.
[22] ORWIN K H, OSTLE N J. Moss species effects on peatland carbon cycling after fire [J]. Functional Ecology, 2012, 26(4): 829-836.
[23] JACKSON B G, NILSSON M C, WARDLE D A. The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence [J]. Plant and Soil, 2013, 367(1-2): 199-214.
[24] ZINSMEISTER H D, BECKER H, EICHER T. Bryophytes, a source of biologically-active, naturally-occurring material [J]. Angewandte Chemie-International Edition in English, 1991, 30(2):130-147.
[25] TURETSKY M R. The role of bryophytes in carbon and nitrogen cycling [J]. Bryologist, 2003, 106(3): 395-409.
[26] BUDGE K, LEIFELD J, EGLI M, et al. Soil microbial communities in(sub)alpine grasslands indicate a moderate shift towards new environmental conditions 11 years after soil translocation [J]. Soil Biology and Biochemistry, 2011, 43(11):48-54.
[27] YANG Jisong, ZHANG Chao, LI Yunzhao, et al. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China [J]. Science of the Total Environment, 2018, 642(1-2): 946-953.
[28] COXSON D S, MCINTYRE D D, VOGEL H J, et al. Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest Guadeloupe French West Indies [J]. Biotropica, 1992, 24(2): 121-133.
[29] WILSON J A, COXSON D S. Carbon flux in a subalpine spruce-fir forest: pulse release from Hylocomium splendens feather–moss mats [J]. Canadian Journal of Botany, 1999, 77(4): 564-569.
[30] WOODIN S J, SOMMERKORN M, GORNALL J L, et al. Differential allocation of carbon in mosses and grasses governs ecosystem sequestration: a 13C tracer study in the high Arctic [J]. New Phytologist, 2009, 184(4): 944-949.
[31] LANGS I, CORNELISSENJ H C, KLAHN T, et al. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species [J]. Journal of Ecology, 2009, 97(5): 886-900.
[32] JACKSON B G, NILSSON M C, WARDLE D A. The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence [J]. Pant and Soil, 2013, 367(1-2): 199-214.
[33] GAUMONT G D, BLACK T A, BARR A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand [J]. Tree Physiology, 2008, 28(2): 161-171.