[1]李 军,赵 彤,朱 维,等.基于Landsat8的重庆主城区城市热岛效应研究[J].山地学报,2018,(03):452-461.[doi:10.16089/j.cnki.1008-2786.000341]
 LI Jun,ZHAO Tong,ZHU Wei,et al.Urban Heat Island Effect Based on Landsat8 Image in Urban Districts of Chongqing, China[J].Mountain Research,2018,(03):452-461.[doi:10.16089/j.cnki.1008-2786.000341]
点击复制

基于Landsat8的重庆主城区城市热岛效应研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年03期
页码:
452-461
栏目:
山地技术
出版日期:
2018-05-30

文章信息/Info

Title:
Urban Heat Island Effect Based on Landsat8 Image in Urban Districts of Chongqing, China
文章编号:
1008-2786-(2018)3-452-10
作者:
李 军123赵 彤1朱 维1罗玉岚1
1.重庆师范大学 地理与旅游学院,重庆401331; 2.重庆市高校 GIS 应用研究重点实验室,重庆401331; 3.三峡库区地表过程与环境遥感重庆市重点实验室,重庆401331
Author(s):
LI Jun123ZHAO Tong1ZHU Wei1LUO Yulan1
1.College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; 2.Key Laboratory of GIS Application of Chongqing, Chongqing 401331,China; 3.Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in
关键词:
地表温度 Landsat8 城市热岛效应 劈窗算法
Keywords:
land surface temperature Landsat8 urban heat island effect split-window algorithm
分类号:
P237; TP79
DOI:
10.16089/j.cnki.1008-2786.000341
文献标志码:
A
摘要:
重庆作为长江上游重要的经济发展中心城市,随着城市化的加剧,城市热岛效应已引起了广泛关注。本文利用了2014年夏季 Landsat8影像和劈窗算法,根据研究区夏季大气含水量高的特点,订正了大气透过率参数,实现了重庆主城区地表温度的遥感反演,并与卫星过境时间接近的4个气象站点的实测0 cm土壤温度对反演结果进行比较。基于遥感反演的地表温度结果分析了主城区城市热岛效应的空间分布格局及其与不同土地利用类型之间的关系。结果表明:(1)基于Landsat8影像和劈窗算法的遥感反演地表温度在重庆主城区是可行的,平均误差为1.1℃;(2)受不同土地利用和“两江四山夹三槽”特殊地形等因素的影响,重庆主城区的城市热岛强度呈现出显著的空间分布差异,较强热岛以上区域约占总面积的11.55%,其中,建设用地区域明显高于其他土地利用类型,约占总面积的9.11%,无热岛和弱热岛区域分别占总面积的62.66%和19.98%,主要为耕地和林地。
Abstract:
As an important economic center city on the upper reaches of the Yangtze River in western China, Chongqing is also rapidly urbanizing.The effect of urbanization on the urban thermal environment has attracted increasing research attention for its significant relationship to local habitat comfort.In order to study on urban heat island effect in Chongqing in recent years, the land surface temperature in urban districts of Chongqing was firstly retrieved by using split-window algorithm and Landsat8 data on July 30, and August 6, 2014.Moreover, according to the characteristics of high atmospheric water content in summer in urban districts of Chongqing, the atmospheric transmittance were adjusted.The retrieved land surface temperatures were compared with the 0 cm soil temperatures observed by 4 meteorological stations.Then the spatial distribution of the urban heat island effect in urban districts of Chongqing and its quantificational relation with land use were analyzed.Results showed that:(1)the scheme proposed in our work to retrieve land surface temperature from Landsat8 data in urban districts of Chongqing was acceptable.The mean bias of the retrieved land surface temperature was 1.1℃.(2)Influenced by landuse, special terrain topography like “two rivers, four mountains with three slots” and etc., the spatial distribution of heat island intensity in urban districts of Chongqing showed significant differences.The strong heat island zone was occupied over 11.55% and it was mainly distributed in the built-up area, occupied 9.11%.No heat island and weak heat island mainly appeared in the cultivated land and forest, occupied 62.66% and 19.98% respectively.

参考文献/References:

[1] LANDSBERG H E.The Urban Climate[M].NewYork:Academic Press,1981:28-30.
[2] 周淑贞,束炯.城市气候学[M].北京:气象出版社,1994:245-346 [ZHOU Shuzhen, Su Jiong.Urban Climatology[M].Beijing: China Meteorological Press,1994:245-346]
[3] 祝善友,张桂欣,尹球,等.地表温度热红外遥感反演的研究现状及其发展趋势[J].遥感技术与应用,2006,21(5):420-425 [ZHU Shanyou, ZHANG Jiaxin, YIN Qiu, et al.Actualities and development trends of the study on land surface temperature retrieving from thermal infrared remote sensing[J].Remote Sensing Technology and Application,2006,21(5):420-425]
[4] TANG Bohui, BI Yuyun, LI Zhaoliang, et al.Generalized split-window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite(FY-2C)data[J].Sensors,2008,8(2):933-951
[5] LI Zhaoliang, TANG Bohui, WU Hua, et al.Satellite-derived land surface temperature: current status and perspectives[J].Remote Sensing of Environment,2013,131:14-37
[6] 寿亦萱,张大林.城市热岛效应的研究进展与展望[J].气象学报,2012,70(3):338-353 [SHOU Yixuan, ZHANG Dalin.Recent advances in understanding urban heat island effects with some future prospects[J].Acta Meteorologica Sinica,2012,70(3):338-353]
[7] 徐涵秋.基于城市地表参数变化的城市热岛效应分析[J].生态学报,2011,31(14):3890-3901 [XU Hanqiu.Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors[J].Acta Ecologica Sinica,2011,31(14):3890-3901]
[8] 毛克彪,覃志豪,宫鹏,等.劈窗算法LST精度评价和参数敏感性分析[J].中国矿业大学学报,2005,34(3):318-322 [MAO Kebiao, QIN Zhihao, GONG Peng, et al.The evaluation of split-window algorithm and the analysis of parameter sensitivity[J].Journal of China University of Mining & Technology,2005,34(3):318-322]
[9] 杨槐.从Landsat8影像反演地表温度的劈窗算法研究[J].测绘地理信息,2014,39(4):73-77 [YANG Huai.Research of split window algorithm for retrieval of land surface temperature from Landsat8[J].Journal of Geomatics,2014,39(4):73-77]
[10] 胡德勇,乔琨,王兴玲,等.单窗算法结合Landsat8热红外数据反演地表温度[J].遥感学报,2015,19(6):964-976 [HU Deyong, QIAO Kun, WANG Xinling, et al.Land surface temperature retrieval from Landsat8 thermal infrared data using mono-window algorithm[J].Journal of Remote Sensing,2015,19(6):964-976]
[11] 蒋大林,匡鸿海,曹晓峰,等.基于Landsat8的地表温度反演算法研究--以滇池流域为例[J].遥感技术与应用,2015,30(3):448-454 [JIANG Dalin, KUANG Honghai, CAO Xiaofeng, et al.Study of land surface temperature retrieval based on Landsat8 - with the sample of Dianchi Lake Basin[J].Remote Sensing Technology and Application,2015,30(3):448-454]
[12] 李瑶,潘竟虎.基于Landsat8劈窗算法与混合光谱分解的城市热岛空间格局分析--以兰州市中心城区为例[J].干旱区地理,2015,38(1):111-119 [LI Yao, PAN Jinghu.Spatial pattern on urban heat environment using split window algorithm and spectral mixture analysis based on Landsat 8 images: a case of Lanzhou city[J].Arid Land Geography,2015,38(1):111-119]
[13] 徐涵秋.新型Landsat8卫星影像的反射率和地表温度反演[J].地球物理学报,2015,58(3):741-747 [XU Hanqiu.Retrieval of the reflectance and land surface temperature of the newly-launched Landsat8 satellite [J].Chinese Journal of Geophysics, 2015,58(3):741-747]
[14] 宋挺,段峥,刘军志,等.基于Landsat-8数据和劈窗算法的地表温度反演及城市热岛效应研究[J].环境监控与预警,2014,6(5):4-10 [SONG Ting, DUAN Zheng, LIU Junzhi, et al.Land surface temperature retrieval from Landsat8 data using split-window algorithm and its application on the study of urban heat island effect[J].Environmental Monitoring and Forewarning,2014,6(5):4-10]
[15] 邓睿,胡日查,刘亮,等.基于Landsat8 OLI/TIRS数据的重庆市不透水面与城市热环境关系研究[J].重庆交通大学学报(自然科学版),2017,36(1):68-76 [DENG Rui, HU Richa, Liu Liang, et al.Study on the relationship between the impervious surface and the urban thermal environment in Chongqing based on Landsat8 OLI/TIRS image[J].Journal of Chongqing Jiaotong University(Natural Science),2017,36(1):68-76]
[16] 黎良财,Deng-sheng LU,张晓丽,等.基于Landsat8 卫星影像的重工业城市热岛效应研究--以柳州市为例[J].中南林业科技大学学报,2015,35(7):74-80 [LI Liangcai, LU D S, ZHANG Xiaoli, et al.Study on urban heat island effect of heavy industries based on Landsat8 satellite imagery - A case study in Liuzhou city[J].Journal of Central South University of Forestry & Technology,2015,35(7):74-80]
[17] 陈云.基于Landsat8的城市热岛效应研究初探--以厦门市为例[J].测绘与空间地理信息,2014,37(2):123-128 [CHEN Yun.A preliminary study on the urban heat island effect based on Landsat8: case of Xiamen city[J].Geomatics & Spatial Information Technology, 2014,37(2):123-128]
[18] ROZENSTEIN O,QIN Z H,DERIMIAN Y, et al.Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J].Sensor,2014,14:5768-5780
[19] QIN Z H,DALL O G,KARNIELI A, et al.Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J].Journal of Geophysical Research,2001b,106(D19):22655-22670
[20] 覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004(3):28-32 [QIN Zhihao, LI Wenjuan, XU Bin, et al.Estimation of land surface emissivity for the spectral range of Landsat TM6[J].Remote Sensing for Land and Resources, 2004(3):27-32]
[21] SOBRINO J A, JIMNEZ MUNOZ J C, PAOLINI L.Land surface temperature retrieval from Landsat TM5[J].Remote Sensing of Environment,2004,90:434-440
[22] 张勇,余涛,顺行发,等.CBERS-02 IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用[J],遥感学报,2006,10(5):789-797 [ZHANG Yong, YU Tao, SHUN Xingfa, et al.Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect[J].Journal of Remote Sensing,2006,10(5):789-797]

相似文献/References:

[1]李磊磊,范建容*,张茜彧,等.西藏自治区植被与气候变化的关系[J].山地学报,2017,(01):9.[doi:10.16089/j.cnki.1008-2786.000190]
 LI Leilei,FAN Jianrong,et al.Relationships between NDVI and Climate Changes in Tibet, China[J].Mountain Research,2017,(03):9.[doi:10.16089/j.cnki.1008-2786.000190]

备注/Memo

备注/Memo:
收稿日期(Received date):2017-06-19; 改回日期(Accepted date):2018-06-14
基金项目(Foundation item):重庆市前沿与应用基础研究计划一般项目(cstc2015jcyjA0332); 重庆市社会民生科技创新专项项目(cstc2015shmszx00010); 中国科学院重点部署项目(KZZD-EW-TZ-18)。[Chongqing Fontier and Applied Basic Research Program(cstc2015jcyjA0332); Social Science and Technology Innovation Project of Chongqing(csct2015shmszx00010); Key Research Program of the Chinese Academy of Sciences(KZZD-EW-TZ-18)]
作者简介(Biography):李军(1974-),男,博士,副研究员,主要研究方向:农业遥感和地理信息系统应用研究。[LI Jun(1974-), Ph.D., associate professor, research on agricultural remote sensing, geographic information system and its application] E-mail: junli@cqnu.edu.cn
更新日期/Last Update: 2018-05-30