[1]张诗茄,蒋建军*,缪亚敏,等.基于SBAS技术的岷江流域潜在滑坡识别[J].山地学报,2018,(01):91-97.[doi:10.16089/j.cnki.1008-2786.000304]
 ZHANG Shijia,JIANG Jianjun*,MIAO Yamin,et al.Application of the SBAS Technique in Potential Landslide Identification in the Minjiang Watershed[J].Mountain Research,2018,(01):91-97.[doi:10.16089/j.cnki.1008-2786.000304]
点击复制

基于SBAS技术的岷江流域潜在滑坡识别()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年01期
页码:
91-97
栏目:
山地灾害
出版日期:
2018-01-30

文章信息/Info

Title:
Application of the SBAS Technique in Potential Landslide Identification in the Minjiang Watershed
文章编号:
1008-2786-(2018)1-081-07
作者:
张诗茄蒋建军*缪亚敏白世彪
南京师范大学 a.虚拟地理环境教育部重点实验室; b.江苏省地理环境演化国家重点实验室培育建设点; c.江苏省地理信息资源开发与利用协同创新中心,南京210023
Author(s):
ZHANG ShijiaJIANG Jianjun*MIAO YaminBAI Shibiao
a.Key Laboratory of Virtual Geographic Environment of Ministry of Education; b.State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province; c.Jiangsu Center for Collaborative Innovation in Geographical Information and
关键词:
SBAS InSAR 岷江流域 滑坡识别
Keywords:
SBAS InSAR Minjiang watershed landslide identification
分类号:
P642.22
DOI:
10.16089/j.cnki.1008-2786.000304
文献标志码:
A
摘要:
小基线(Small Baseline Subsets,SBAS)技术可以获取微小的形变信息和长时间序列的缓慢地表形变场,在地表形变监测中具有较广的应用前景。本文以地形陡峭的岷江流域为研究区,基于小基线技术获取沿雷达视线方向的形变速率,将其转化为沿坡面方向的形变速率,利用核密度分析对潜在滑坡区域进行提取。研究发现,岷江流域的30处历史滑坡中,有18处位于提取的潜在滑坡区中,有11处位于发生形变的地区范围内,仅有1处位于发生形变的地区之外。这表明,SBAS技术可以较好地监测地势陡峭地区的地表形变,在潜在滑坡识别方面具有较高的可行性。
Abstract:
Landslide often lead to property damages and severe casualties.Potential landslide monitoring and identifying are crucial apporoach to reduce or avoid serious geohazards.Previous studies has indicated that the Interferometric Synthetic Aperture Radar(InSAR)serve as an effective technique for landslide identification and monitoring.However, the application of the InSAR is restricted due to the issues of atmosphere delay, temporal and spatial decorrelation, and so on.In recent years, Small Baseline Subsets(SBAS)technique with prospective applications in surface deformation monitoring has been widely used to obtain tiny and long-time serial change in topographical deformation.In order to identify potential landslide sites in typical steep terrain, in this research SBAS technology was applied to monitor the surface deformation in the Minjiang watershed, the southeast of Longnan City, Gansu Province, where landslides has been prevailing.At first, the deformation rate along the radar sight was obtained based on the SBAS technique but it could not effectively express the true deformation rate along the slope.This is because landslide is usually slid along a slope, and it is transformed into deformation rate along the slope.Nuclear density analysis can transform the deformed area with significant motion into the potential landslide area, so that the potential landslide area in Minjiang watershed was identified by the nuclear density analysis.According to historical landslide data of Minjiang watershed, the identification accuracy of the potential landslide area was verified.The results showed that among the 30 historic landslide points in the Minjiang watershed, 18 points were located in the potential landslide region, and 11 points were located in the deformed zones.This study suggests that the potential landslide identification method based on SBAS technique is a feasible and reliable method to monitor and identify potential landslide.

参考文献/References:

[1] 王立伟.基于D-InSAR数据分析的高山峡谷区域滑坡位移识别[D].北京科技大学, 2015:1-2.[WANG Liwei.Identification of landslide displacement in alpine valley region based on D-InSAR data analysis[D].University of Science and Technology Beijing, 2015:1-2.]
[2] 何杨, 赵超英, 张勤.黄土灌溉区域地面沉降InSAR监测结果分析[J].上海国土资源, 2016, 37(1):66-68.[HE Yang, ZHAO Chaoying, ZHANG Qin.InSAR monitoring result analysis of land subsidence in loess irrigation area[J].Shanghai Land and Resources, 2016, 37(1): 66-68.]
[3] BERARDINO P, FORNARO G, LANARI R, et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].Geoscience & Remote Sensing IEEE Transactions on, 2002, 40(11):2375-2383.
[4] FRUNEAU B, ACHACHE J, DELACOURT C.Observation and modelling of the Saint-étienne-de-Tinée landslide using SAR interferometry[J].Tectonophysics, 1996, 265(3):181-190.
[5] COLESANTI C, FERRETTI A, PRATI C, et al.Monitoring landslides and tectonic motions with the Permanent Scatterers technique[J].Engineering Geology, 2003, 68(s 1-2):3-14.
[6] 廖明生, 唐婧, 王腾,等.高分辨率SAR数据在三峡库区滑坡监测中的应用[J].中国科学:地球科学, 2012(02):217-229.[LIAO Mingsheng, TANG Jing, WANG Teng, et al.Landslide monitoring with High-resolution SAR data in the three gorges region[J].Science China Earth Science, 2012(02): 217-229.]
[7] 钮小坤.基于SBAS技术在北京地区的地面沉降监测与分析[D].首都师范大学, 2013:14-16.[NIU Xiaokun.Monitoring and analysis of land subsidence based on SBAS in Beijing area[D].Capital Normal University, 2013:14-16.]
[8] 朱钱洪.基于SBAS技术的白龙江流域典型区滑坡信息提取研究[D].南京师范大学, 2015:22-26.[ZHU Qianhong.Study on the landslide information extraction in Bailongjiang basin using SBAS technique[D].Nanjing Normal University, 2015:22-26.]
[9] 范青松, 汤翠莲, 陈于,等.GPS与InSAR技术在滑坡监测中的应用研究[J].测绘科学, 2006, 31(5):60-62.[FAN Qingsong, TANG Cuilian, CHEN Yu, et al.Applications of GPS and InSAR in monitoring of landslide studies[J].Science of Surveying and Mapping, 2006, 31(5): 60-62.]
[10] 单新建, 张国宏.孕震区震前D-InSAR干涉形变场动态演化图像分析[J].地震地质, 2006, 28(3):441-446.[SHAN Xinjian, ZHANG Guohong.An analysis of dynamic evolution of perseismic interferometric deformation fields in seismic area[J].Seismology and Geology, 2006, 28(3): 441-446.]
[11] 许才军, 林敦灵, 温扬茂.利用InSAR数据的汶川地震形变场提取及分析[J].武汉大学学报:信息科学版, 2010, 35(10):1138-1142.[XU Caijun, LIN Dunling, WEN Yangmao.Extract and analysis surface deformation caused by Wenchuan Mw 7.9 earthquake from InSAR data[J].Geomatics and Information Science of Wuhan University, 2010, 35(10): 1138-1142.]
[12] 蒋弥, 丁晓利, 李志伟,等.用L波段和C波段SAR数据研究汶川地震的同震形变[J].大地测量与地球动力学, 2009, 29(1):21-26.[JIANG Mi, DING Xiaoli, LI Zhiwei, et al.Study on coseismic deformation of Wenchuan earthquake by use of land L wave and land C wave bands of SAR data[J].Journal of Geodesy and GeoDynamics, 2009, 29(1): 21-26.]
[13] 何平.时序InSAR的误差分析及应用研究[D].武汉大学, 2014:16-17.[HE Ping.Error analysis and surface deformation application of time series InSAR[D].Wuhan University, 2014:16-17.]
[14] 唐桂彬, 李俊锋, 杨爱玲.小基线集技术在地面沉降监测中的应用[J].测绘与空间地理信息, 2014(12):165-168.[TANG Guibing, LI Junfeng, YANG Ailing.The use of SBAS-InSAR technology in ground subsidence monitoring[J].Geomatics and Spatial Information Technology, 2014(12): 165-168.]
[15] 温浩.基于MTI技术的岷江流域滑坡识别研究[D].南京师范大学, 2015:32-35.[WEN Hao.Study on landslide recognition in Minjiang basin based on MTI technology[D].Nanjing Normal University, 2015:32-35.]
[16] 陈富龙,林珲,程世来.星载雷达干涉测量及时间序列分析的原理、方法与应用[M].北京: 科学出版社,2013:3.[CHEN Fulong, LIN Hui, CHENG Shilai.Principle, Method and application of spaceborne radar interferometry and time series analysis[M].Beijing: Science Press,2013:3.]
[17] BIANCHINI S, HERRERA G, MATEOS R M, et al.Landslide activity maps generation by means of persistent scatterer interferometry[J].Remote Sensing, 2013, 5(12):6198-6222.
[18] CASCINI L, FORNARO G, PEDUTO D.Advanced low- and full-resolution D-InSAR map generation for slow-moving landslide analysis at different scales[J].Engineering Geology, 2010, 112(1-4):29-42.
[19] COLESANTI C, WASOWSKI J.Investigating landslides with space-borne Synthetic Aperture Radar(SAR)interferometry[J].Engineering Geology, 2006, 88(3):173-199.
[20] 白春鸿, 程钢, 梁文旭,等.山体滑坡地表形变监测及稳定性分析[J].河南城建学院学报, 2013, 22(2):24-27.[BAI Chunhong, CHENG Gang, LIANG Wenxu, et al.Analysis of monitoring and stability of landslide surface deformation[J].Journal of Henan University of Urban Construction, 2013, 22(2): 24-27.]
[21] PING Lu, NICOLA Casagli, FILIPPO Catani, et al.Persistent Scatterers Interferometry Hotspot and Cluster Analysis(PSI-HCA)for detection of extremely slow-moving landslides[J].International Journal of Remote Sensing, 2012, 33(33):466-489.
[22] 杨建清, 彭建平, 李启兰.试论甘肃省宕昌县中药材产业化发展[J].北京农业, 2011(15):125-126.[YANG Jianqing, PENG Jianping, LI Qilan.The development of traditional chinese medicine industry dangchang county[J].Beijing Agriculture, 2011(15):125-126.]
[23] 张茂省, 黎志恒, 王根龙,等.白龙江流域地质灾害特征及勘查思路[J].西北地质, 2011, 44(3):1-9.[ZHANG Maosheng, LI Zhiheng, WANG Genlong, et al.The geological hazard characteristics and exploration ideas of the Bailong river basin[J].Northwestern Geology, 2011, 44(3): 1-9.]
[24] BIANCHINI S, HERRERA G, MATEOS R M, et al.Landslide activity maps generation by means of Persistent Scatterer Interferometry[J].Remote Sensing, 2013, 5(12):6198-6222.
[25] HERRERA G, GUTIéRREZ F, GARCíA-DAVALILLO J C, et al.Multi-sensor advanced D-InSAR monitoring of very slow landslides: The Tena Valley case study(central Spanish Pyrenees)[J].Remote Sensing of Environment, 2013, 128(1):31-43.

相似文献/References:

[1]苏晓军a,张 毅b*,贾 俊,等.基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究[J].山地学报,2021,(1):59.[doi:10.16089/j.cnki.1008-2786.000576]
 SU Xiaojuna,ZHANG Yib*,JIA Jun,et al.InSAR-Based Monitoring and Identification of Potential Landslides in Lueyang County, the Southern Qinling Mountains, China[J].Mountain Research,2021,(01):59.[doi:10.16089/j.cnki.1008-2786.000576]

备注/Memo

备注/Memo:
收稿日期(Received date): 2016-08-23; 改回日期(Accepted date): 2017-01-21
基金项目(Foundation item):2015年江苏省重点研发计划(社会发展)项目(BE2015704); 中国科技部与欧洲空间局“龙计划”三期项目(10606); 江苏高校优势学科建设工程资助项目(164320H116)。[2015 Research and Development Program of Jiangsu(Social Development)(BE2015704); Dragon 3 Project Cooperation between European Space Agency and Ministry of Science and Technology of China(10606); Preponderant Funded Projects of Jiangsu Higher Education Institutions(164320H116)]
作者简介(Biography):张诗茄(1991-),女,江苏淮安人,硕士研究生,主要研究方向:滑坡识别研究。[Zhang Shijia(1991-), female, born in Huaian, Jiangsu province, M.Sc.candidate, research on landslide identification mapping] E-mail:806533840@qq.com
*通讯作者(Corresponding author):蒋建军(1963-),男,博士,副教授,主要研究方向:滑坡识别研究。[Jiang Jianjun(1963-), male, Ph.D., associate professor, specialized in landslide identification mapping] E-mail: 5427346@qq.com
更新日期/Last Update: 2018-01-30