[1]王媛韬,张 林*,沈 维,等.藏东南色季拉山林线过渡带生长季低温事件的海拔分布特征[J].山地学报,2017,(03):308-315.[doi:10.16089/j.cnki.1008-2786.000226]
 WANG Yuantao,ZHANG Lin,SHEN Wei,et al.Altitudinal Variations of Freezing Events at Timberline Ecotone in the Sergyemla Mountains, Southeast Tibet[J].Mountain Research,2017,(03):308-315.[doi:10.16089/j.cnki.1008-2786.000226]
点击复制

藏东南色季拉山林线过渡带生长季低温事件的海拔分布特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年03期
页码:
308-315
栏目:
山地环境
出版日期:
2017-05-30

文章信息/Info

Title:
Altitudinal Variations of Freezing Events at Timberline Ecotone in the Sergyemla Mountains, Southeast Tibet
文章编号:
1008-2786-(2017)3-308-08
作者:
王媛韬12张 林1*沈 维1刘新圣3罗天祥1
1.中国科学院青藏高原研究所 中国科学院高寒生态与生物多样性重点实验室,北京 100101;
2.中国科学院大学,北京 100049;
3.九江学院 旅游与国土资源学院,江西 九江 332005
Author(s):
WANG Yuantao12ZHANG Lin1SHEN Wei1LIU Xinsheng3LUO Tianxiang1
1.Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.College of Tourism and Territorial Resources, Jiujiang 332005,China
关键词:
急尖长苞冷杉 日最低气温 频率 气候变化 生长季长度 幼苗
Keywords:
abiesgeorgei var.smithii daily minimum air temperature frequency climate change growing season length seedling
分类号:
Q948.1
DOI:
10.16089/j.cnki.1008-2786.000226
文献标志码:
A
摘要:
低温事件的加剧可能是限制高山林线向更高海拔爬升的一个关键原因,然而有关高海拔地区不同海拔、不同植被覆盖下的低温事件分布特征的研究十分缺乏。通过对西藏东南部色季拉山急尖长苞冷杉林线过渡带同一坡面不同海拔森林和灌丛冠层温度和土壤温度的监测,并基于冠层温度和土壤温度计算植物的生长季长度,分析生长季期间低温事件在不同海拔、不同植被的分异特征,得到如下结果:1.土壤温度定义的生长季比冠层温度定义的生长季滞后近一个月,且对于亚高山森林和林线,冠层温度定义的生长季长度明显大于土壤温度定义的生长季长度。2.无论以哪种方法定义生长季,期间出现的低温事件均表现为高山杜鹃灌丛>亚高山针叶林和林线,前者低温事件出现频率达后者的2~4倍,且总体而言高山杜鹃灌丛中低温事件的强度更大,持续时间相对更长。研究结果表明高山杜鹃灌丛存在更多的低温事件,而且随海拔增加,其频率、强度和持续时间不断加剧,这可能直接限制了乔木树种幼苗在林线之上低矮灌丛中的存活和生长,进而限制了林线乔木树种向更高海拔的分布。
Abstract:
Severe freezing events could be one of the crucial causes preventing the advance of alpine timberline.However, studies on the characteristics of freezing events across altitudes and vegetation types at high elevations are scarce.Based on the measurements of air and soil temperature for forests and shrubs across an Abies georgei var.Smithii timberline ecotone along a north-facing slope in the Sergyemla Mountains, southeast Tibet, we analyzed altitudinal variations of freezing events for different vegetation types during growing season based on two different definitions-canopy temperature and soil temperature.Results are as follows: 1)compared with canopy temperature of the growing season, soil temperature lagged behind nearly one month, and the length of growing season based on canopy temperature was significantly longer than that calculated by soil temperature for subalpine and timberline forests.2)Although the growing season length varied between different definitions, there were more freezing events in Rhododendron shrubs in the growing season than in the subalpine and timberline forests, and the frequency for the former was 1 to 3 times more than the latter.Besides, the intensity was stronger and the duration was longer in Rhododendron shrubs than in the subalpine and/or timberline forests.Our results indicated that there were more growing-season freezing events in Rhododendron shrubs at high elevations, with their frequency, intensity, and duration all tending to strengthen with rising altitudes.This might result in the difficulty of seedling establishment above the timberline.

参考文献/References:

[1] KÖRNER C.Alpine Plant Life: Functional Plant Ecology of Mountain Ecosystems[M].Berlin & Heidelberg: Springer-Verlag, 2003,chapter 8:88
[2] LARCHER W.Effects of low temperature stress and frost injury on plant productivity[M].In:Johnson CB(ed)Physiological processes limiting plant productivity.Butterworth,London,1981,253-269
[3] GU L H, HANSON P J, MAC Post Wetal.The 2007 eastern US spring freeze: increased cold damage in a warming world? [J].BioScience, 2008, 58(3): 253-262
[4] HUFKENS K, FRIEDL M A, KEENAN T F et al.Ecological impacts of a widespread frost event following early spring leaf-out[J].Global Change Biology, 2012, 18(7): 2365-2377
[5] SMITH D J.Frost-heave activity in the Mount Rae area, Canadian Rocky Mountains[J].Arctic and Alpine Research, 1987, 19: 155-166
[6] NEUNER G, HACKER J.Ice formation and propagation in alpine plants[M].In: Lütz, C(Ed.), Plants in alpine regions: cell physiology of adaption and survival strategies.New York: Springer, 2012, 163-174
[7] KÖRNER C,PAULSEN J.A world-wide study of high altitude treeline temperatures[J].Journal of Biogeography,2004,31(5):713-732
[8] BADER M Y, RIETKERK M, BREGT A K.Vegetation structure and temperature regimes of tropical alpine treelines[J].Airctic, Antarctic, and Alpine Research, 2007, 39(3): 353-364
[9] LIU X, LUO T.Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, Southeast Tibet[J].Arctic Antarctic and Alpine Research, 2011, 43(2): 229-238
[10] SONG Y T, ZHOU D W, ZHANG H X et al.Effects of vegetation height and density on soil temperature variations[J].Chinese Science Bulletin, 2013, 58(8): 907-912
[11] 沈维.藏东南急尖长苞冷杉的更新受限机制及其气候变化响应意义[D].北京: 中国科学院青藏高原研究所, 博士学位论文.2014.[SHEN W.Mechanisms controlling seedling recruitment of Smith fir at treelineecotone in southeast Tibet: implication for warming effect on treeline position [D].Beijing: Institute of Tibetan Plateau Research, Chinese Academy of Sciences.]
[12] MIEHE G, MIEHE S, VOGEL J et al.Highest treeline in the Northern Hemisphere found in Southern Tibet[J].Mountain Research and Development, 2007, 27(2): 169-178
[13] LIANG E Y, WANG Y F, XU Y et al.Growth variation in Abiesgeorgei var.smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau[J].Trees-Structure and Function,2010, 24(2): 363-373
[14] LIANG E, WANG Y, ECKSTEIN D et al.Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming[J].New Phytologist, 2011, 190(3): 760-769
[15] SHEN W, ZHANG L, LIU X S et al.Seed-based treeline seedlings are vulnerable to freezing events in the early growing season under a warmer climate: evidence from a reciprocal transplant experiment in the Sergyemla Mountains, southeast Tibet[J].Agricultural and Forest Meteorology, 2014, 187: 83-92
[16] SMITH W K, GERMINO M J, HANCOCK T E et al.Another perspective on altitudinal limits of alpine timberlines[J].Tree Physiology, 2003, 23(16): 1101-1112
[17] VITASSE Y.Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier[J].New Phytologist, 2013, 198(1):149-155
[18] ABRAMOFF R Z, FINZI A C.Are above- and below-ground phenology in sync?[J].New Phytologist,2015, 205(3):1054-1061
[19] 俞洁辉,刘新圣,罗天祥等.念青唐古拉山北麓草甸海拔分布上限土壤温湿度的季节变化[J].地理学报,2012, 67(9): 1246-1254[YU J H, LIU X S, LUO T X et al.Seasonal variations of soil temperature and moisture at the upper limit of alpine meadow in north-facing slope of the Nianqingtanggula Mountain[J].Acta Geographica Sinica, 2012, 67(9): 1246-1254]
[20] 王忠.念青唐古拉山南坡高寒草甸生产力沿海拔梯度的变化机理研究[D].北京: 中国科学院青藏高原研究所, 博士学位论文.2011.[WANG Z.Mechanisms for altitudinal variations in net primary productivity of alpine meadow in central Tibetan Plateau [D].Beijing: Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2011.]
[21] COOP J D, GIVNISH T J.Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico[J].Ecology, 2008, 89(4): 1101-1111
[22] ZHANG L, LUO T, Liu X et al.Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens[J].Acta Oecologica, 2012, 43:72-79
[23] HÄTTENSCHWILER S, SMITH W K.Seedling occurrence in alpine treeline conifers: a case study from the central Rocky Mountains, USA[J].Acta Oecologica, 1999, 20(3): 219-224
[24] EASTERLING D R, MEEHL G A, PARMESAN C et al.Climate extremes: observations, modeling, and impacts[J].Science, 2000, 289(5487):2068-2074
[25] CANNONE N, SGORBATI S, GUGLIELMIN M.Unexpected impacts of climate change on alpine vegetation[J].Front Ecol Environ, 2007, 5(7):360-364
[26] SIERRA-Almeida A, CAVIERES L A.Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes[J].Oecologia, 2010, 163(1): 267-276
[27] LINDERHOLM H.Growing season changes in the last century[J].Agricultural and forest meteorology, 2006, 137(1-2): 1-14
[28] YU H Y, LUEDELING E, Xu J C.Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22151-22156
[29] SHEN M, SUN Z, WANG S et al.No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade[J].Proceedings of the National Academy of Sciences, 2013, 110(26): E2329.
[30] ZHANG G, ZHANG Y, DONG J et al.Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J].Proceedings of the National Academy of Sciences, 2013, 110(11): 4309-4314
[31] HU J, MOORE DJ P, BURNS SP et al.Longer growing seasons lead to less carbon sequestration by a subalpine forest[J].Global Change Biology, 2009, 16(2): 771-783
[32] LIU B H, HENDERSON M, ZHANG Y D et al.Spatiotemporal change in China's climatic growing season: 1955—2000[J].Climate Change, 2009, 99(1-2): 93-118

相似文献/References:

[1]刘新圣,张林,孔高强,等.藏东南色季拉山急尖长苞冷杉林线地带地上生物量随海拔的变化特征[J].山地学报,2011,(03):362.
 LIU Xinsheng,ZHANG Lin,et al.Altitudinal Variation in Aboveground Biomass of Abies georgei var. smithii at Timberline of the Sergyemla Mountains, Southeast Tibet[J].Mountain Research,2011,(03):362.
[2]程新宇杰,高 路*.基于综合自然区划的天山区域气温变化研究[J].山地学报,2018,(02):194.[doi:10.16089/j.cnki.1008-2786.000315]
 CHENG Xinyujie,GAO Lu*.Temperature Changes in Tianshan Mountains Based on Integrated Physicogeographical Regionalization[J].Mountain Research,2018,(03):194.[doi:10.16089/j.cnki.1008-2786.000315]

备注/Memo

备注/Memo:
收稿日期(Received date):2015-11-25; 修回日期(Accepted date):2017-07-14。
基金项目(Foundation item):国家自然科学基金(41471039); 中国科学院战略性先导科技专项(XDA05050303); 中国科学院科技基础性工作专项(2015FY11030001); 中科院西部行动计划项目(KZCX2-XB3-08-02)。[National Natural Science Foundation of China(41471039)of CAS; Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05050303); Basic Work of Science and Technology(2015FY11030001); the Action Plan for West Development of the CAS(KZCX2-XB3-08-02).]
作者简介(Biography):王媛韬(1991-),女(蒙古族),内蒙古人,硕士研究生,主要从事生态与植被遥感方面的研究。[Wang Yuantao(1991-),female(Mongol),Inner Mongolia,M.Sc.candidate,major in ecology and remote sensing of vegetation.] E-mail:wyuan1166@sina.com
*通讯作者(Corresponding author):张林(1979-),男,云南人,副研究员,主要从事植物生态学与气候变化方面的研究。[Zhang Lin(1979-),male,Yunnan province,associate professor,research on phytoecology and climate change.] E-mail: zhanglin@itpcas.ac.cn
更新日期/Last Update: 2017-05-30