[1]罗 贤,季 漩,李运刚,等.怒江流域中上游地表冻融特征及时空分布[J].山地学报,2017,(03):266-273.[doi:10.16089/j.cnki.1008-2786.000221]
 LUO Xian,JI Xuan,LI Yungang,et al.Spatial and Temporal Distribution and Variation Characteristics of Surface Freeze/Thaw Status in the Upper and Middle Nujiang River Basin[J].Mountain Research,2017,(03):266-273.[doi:10.16089/j.cnki.1008-2786.000221]
点击复制

怒江流域中上游地表冻融特征及时空分布()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年03期
页码:
266-273
栏目:
山地环境
出版日期:
2017-05-30

文章信息/Info

Title:
Spatial and Temporal Distribution and Variation Characteristics of Surface Freeze/Thaw Status in the Upper and Middle Nujiang River Basin
文章编号:
1008-2786-(2017)3-266-08
作者:
罗 贤季 漩李运刚黄江成
云南大学 亚洲国际河流中心/云南省国际河流与跨境生态安全重点实验室,云南 昆明 650091
Author(s):
LUO Xian JI Xuan LI Yungang HUANG Jiangcheng
Asian International Rivers Center of Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan Kunming 650091, China
关键词:
地表冻融状态 被动微波遥感 气候变化 怒江流域
Keywords:
surface freeze/thaw status passive microwave remote sensing climate change Nujiang River Basin
分类号:
P933
DOI:
10.16089/j.cnki.1008-2786.000221
文献标志码:
A
摘要:
冻土水文过程的复杂性使其分析及模拟较为困难,在研究青藏高原冻土退化水文效应的过程中,需要明确流域内土壤冻结和融化状态的时空变化特征。利用被动微波遥感数据反演获得的地表冻融状态,系统地辨识怒江流域中上游地表冻融状态时空变异特征。结果表明:1.怒江流域贡山水文站以上年平均地表冻结天数>270 d的区域占研究区总面积的32.0%,而180~270 d的则约占62.3%,海拔高度每升高1 000 m,年地表冻结天数平均增长约62 d; 2.研究区不同年份持续冻结的开始和结束时间差异较大,融化-冻结阶段的9—10月平均气温与阶段末10月地表冻结面积的相关系数为-0.80,而冻结-融化阶段的4—6月平均气温与阶段末6月地表冻结面积的相关系数则为-0.87,均在0.01水平上显著负相关,研究区气温的年际波动导致地表冻结面积、冻结日期、融化日期及冻结持续时间等的年际变化; 3.被动微波遥感反演获得的高时间分辨率冻融状态数据,可为气候变化背景下,缺资料高原山地流域大范围地表冻融状态变化分析、流域尺度水文过程模拟等提供良好的数据支撑。
Abstract:
The complexity of hydrological process in frozen regions makes its analysis and simulation difficult.When researching on hydrological impacts of frozen soil degeneration in Tibetan Plateau, it is needed to know spatial and temporal distribution characteristics of soil freezing and thawing status.Making use of surface soil freeze/thaw status derived from passive microwave remote sensing data, spatial and temporal distribution and variation characteristics of surface soil freezing and thawing status in the Upper and Middle Nujiang River Basin was identified.The results showed that:(1)In much of Nujiang River Basin above Gongshan station, the area with more than 270 surface freezing days covered 32.0% of total area, and the area with surface freezing days between 180 and 270 days accounted for 62.3%.On average, annual surface freezing days were increased by about 62 days with every 1000 m elevation.(2)The start and end time of continuous freezing status in the study area varied in different years.The correlation coefficient between average temperature in thaw-freeze stage(September to October)and freezing area in October was -0.80, while the correlation coefficient between average temperature in freeze-thaw stage(April to June)and freezing area in June was -0.87.Both reach 0.01 significant level.Interannual fluctuation of air temperature resulted in the variations of surface soil freezing area and duration, and the start date of freezing and thawing status.(3)Surface soil freeze/thaw status derived from passive microwave remote sensing data, with high time resolution, could be applied in large-scale freeze/thaw variations analysis and hydrological simulation under climate change, especially in ungauged plateau and mountain watersheds.

参考文献/References:

[1] 杨梅学, 姚檀栋, Nozomu H, 等.青藏高原表层土壤的日冻融循环[J].科学通报, 2006, 51(16): 1974-1976[YANG Meixue, YAO Tandong, GOU Xiaohua, et al.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau [J].Chinese Science Bulletin, 2007, 52(1): 136-139]
[2] WU Qingbai, ZHANG Tingjun.Recent permafrost warming on the Qinghai-Tibetan Plateau [J].Journal of Geophysical Research, 2008, 113: D13108
[3] KANG Shichang, XU Yanwei, YOU Qinglong, et al.Review of climate and cryospheric change in the Tibetan Plateau [J].Environmental Research Letters, 2010, 5(1): 015101
[4] LI Xin, JIN Rui, PAN Xiaoduo, et al.Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau [J].International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 33-42
[5] 程国栋, 金会军.青藏高原多年冻土区地下水及其变化[J].水文地质工程地质, 2013, 40(1): 1-11[CHENG Guodong, JIN Huijun.Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes [J].Hydrogeology & Engineering Geology, 2013, 40(1): 1-11]
[6] 陈仁升, 康尔泗, 吉喜斌, 等.黑河源区高山草甸的冻土及水文过程初步研究[J].冰川冻土, 2007, 29(3): 387-396[CHEN Rensheng, KANG Ersi, JI Xibin, et al.Preliminary study of the hydrological processes in the alpine meadow and permafrost regions at the headwaters of Heihe River [J].Journal of Glaciology and Geocryology, 2007, 29(3): 387-396]
[7] 孙颖娜, 付强, 姜宁, 等.寒区冻土水文模拟模型研究若干进展[J].水文, 2008, 28(4): 1-4[SUN Yingna, FU Qiang, JIANG Ning, et al.Research on hydrological frozen soil simulation model for cold area [J].Journal of China Hydrology, 2008, 28(4): 1-4]
[8] WANG Genxu, HU Hongchang, LI Taibin.The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed [J].Journal of Hydrology, 2009, 375: 438-449
[9] 阳勇, 陈仁升.冻土水文研究进展[J].地球科学进展, 2011, 26(7): 711-723[YANG Yong, CHEN Rensheng.Research review on hydrology in the permafrost and seasonal frozen regions [J].Advances in Earth Science, 2011, 26(7): 711-723]
[10] CHRISTOPHER Spence,AMANDA Burke.Estimates of Canadian Arctic Archipelago runoff from observed hydrometric data [J].Journal of Hydrology, 2008, 362: 247-259
[11] 王晓巍, 付强, 丁辉, 等.季节性冻土区水文特性及模型研究进展[J].冰川冻土, 2009, 31(5): 953-959[WANG Xiaowei, FU Qiang, DING Hui, et al.Advances in researches on hydrologic features and their modeling in seasonal frozen soil regions [J].Journal of Glaciology and Geocryology, 2009, 31(5): 953-959]
[12] 王康, 张廷军.中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J].地球科学进展, 2013, 28(11): 1269-1275[WANG Kang, ZHANG Tingjun.Spatial and temporal distribution and variations in the near-surface soil freezing days across China,1956-2006 [J].Advances in Earth Science, 2013, 28(11): 1269-1275]
[13] 叶柏生, 丁永建, 焦克勤, 等.我国寒区径流对气候变暖的响应[J].第四纪研究, 2012, 32(1): 103-110[YE Baisheng, DING Yongjian, JIAO Keqin, et al.The response of river discharge to climate warming in cold region over China [J].Quaternary Sciences, 2012, 32(1): 103-110]
[14] 晋锐, 李新, 车涛.SSM/I监测地表冻融状态的决策树算法[J].遥感学报, 2009, 13(1): 152-161[JIN Rui, LI Xin, CHE Tao.A decision tree algorithm for surface freeze/thaw classification using SSM/I [J].Journal of Remote Sensing, 2009, 13(1): 152-161]
[15] 张廷军, 晋锐, 高峰.冻土遥感研究进展: 被动微波遥感[J].地球科学进展, 2009, 24(10): 1073-1083[ZHANG Tingjun, JIN Rui, GAO Feng.Overview of the satellite remote sensing of frozen ground: passive microwave sensors [J].Advances in Earth Science, 2009, 24(10): 1073-1083]
[16] 杜军, 翁海卿, 袁雷, 等.近40年西藏怒江河谷盆地的气候特征及变化趋势[J].地理学报, 2009, 64(5): 581-591[DU Jun, WENG Haiqing, YUAN Lei, et al.The climate characteristics and changing trends over the Nujiang River Basin in Tibet from 1971 to 2008 [J].Acta Geographica Sinica, 2009, 64(5): 581-591]
[17] 樊辉, 何大明.怒江流域气候特征及其变化趋势[J].地理学报, 2012, 67(5): 621-630[FAN Hui, HE Daming.Regional climate and its change in the Nujiang River Basin [J].Acta Geographica Sinica, 2012, 67(5): 621-630]
[18] 罗贤, 何大明, 季漩, 等.近50年怒江流域中上游枯季径流变化及其对气候变化的响应[J].地理科学, 2016,36(1): 107-113[LUO Xian, HE Daming, JI Xuan, et al.Low flow variations in the middle and upper Nujiang River Basin and possible responds to climate change in recent 50 years [J].Scientia Geographica Sinica, 2016,36(1): 107-113]
[19] 杜军, 建军, 洪健昌, 等.1961-2010年西藏季节性冻土对气候变化的响应[J].冰川冻土, 2012, 34(3): 512-521[DU Jun, JIAN Jun, HONG Jianchang, et al.Response of seasonal frozen soil to climate change on Tibet Region from 1961 to 2010 [J].Journal of Glaciology and Geocryology, 2012, 34(3): 512-521]
[20] 刘昌明, 周成虎, 于静洁, 等.中国水文地理[M].北京: 科学出版社, 2014: 828-829[LIU Changming, ZHOU Chenghu, YU Jingjie, et al.China Hydro-geography [M].Beijing: Science Press, 2014: 828-829]
[21] 陆孝平, 富曾慈.中国主要江河水系要览[M].北京: 中国水利水电出版社, 2010: 128-131[LU Xiaoping, FU Zengci.China's major river systems [M].Beijing: China Water & Power Press, 2010: 128-131]
[22] 刘冬英, 沈燕舟, 王政祥.怒江流域水资源特性分析[J].人民长江, 2008, 39(17): 64-66[LIU Dongying, SHEN Yanzhou, WANG Zhengxiang.Analysis of water resource characteristics in Nujiang River Basin [J].Yangtze River, 2008, 39(17): 64-66]
[23] 中国科学院青藏高原综合科学考察队.西藏河流与湖泊[M].北京: 科学出版社, 1984:24-26[Comprehensive Scientific Expedition of Chinese Academy of Sciences to the Qinghai-Tibetan Plateau.Rivers and Lakes in Tibet [M].Beijing: Science Press, 1984:24-26]
[24] 何大明, 冯彦, 胡金明, 等.中国西南国际河流水资源利用与生态保护[M].北京: 科学出版社, 2007:43-45[HE Daming, FENG Yan, HU Jinming, et al.Utilization of water resources and environmental conservation in the international rivers, Southwest China [M].Beijing: Science Press, 2007:43-45]
[25] 周幼吾, 郭东信, 邱国庆, 等.中国冻土[M].北京: 科学出版社, 2000:19-21, 42-45[ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al.Geocryology in China [M].Beijing: Science Press, 2000:19-21, 42-45]

备注/Memo

备注/Memo:
收稿日期(Received date):2016-02-01; 修回日期(Accepted date):2016-06-29。
基金项目(Foundation item):国家自然科学基金项目(41601026); 喜马拉雅地区气候变化适应性研究项目(挪威外交部和瑞典国际发展署)[National Natural Science Foundation of China(41601026); the Himalayan Climate Change Adaptation Program(the Ministry of Foreign Affairs, Norway and Swedish International Development Agency)]
作者简介(Biography):罗贤(1985-),男,云南玉溪人,博士,助理研究员,主要从事水文水资源研究。[Luo Xian, male, born in 1985, Yuxi of Yunnan province, Ph.D, research associate, mainly engaged in hydrology and water resources.] E-mail: luoxian@ynu.edu.cn
更新日期/Last Update: 2017-05-30