[1]袁 礼,刘 伟,翟 健.坡面颗粒流开源软件TITAN2D的改进及应用[J].山地学报,2016,(03):346-355.[doi:10.16089/j.cnki.1008-2786.000138]
 YUAN Li,LIU Wei,ZHAI Jian.Improvement and Application of Open-source Code TITAN2D for Numerical Simulation of Dry Granular Avalanche Flows over Natural Terrain[J].Mountain Research,2016,(03):346-355.[doi:10.16089/j.cnki.1008-2786.000138]
点击复制

坡面颗粒流开源软件TITAN2D的改进及应用()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年03期
页码:
346-355
栏目:
山地灾害
出版日期:
2016-06-01

文章信息/Info

Title:
Improvement and Application of Open-source Code TITAN2D for Numerical Simulation of Dry Granular Avalanche Flows over Natural Terrain
文章编号:
1008-2786-(2016)3-346-10
作者:
袁 礼刘 伟翟 健
中国科学院数学与系统科学研究院计算数学所 科学与工程计算国家重点实验室, 北京 100190
Author(s):
YUAN LiLIU WeiZHAI Jian
LSEC and Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
关键词:
颗粒崩塌流 Savage-Hutter模型 停止准则 开源软件 TITAN2D
Keywords:
granular avalanche flow Savage-Hutter model stopping criterion open source code TITAN2D
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000138
文献标志码:
A
摘要:
滑坡或崩塌碎屑流的泛滥范围和冲击力可以用颗粒薄层流模型进行数值模拟研究。薄层流模型是将流体力学的质量守恒和动量守恒方程在深度方向平均后所得的近似方程组,因其在分析上的简化而广受重视。近年来基于颗粒薄层流模型(以Savage-Hutter模型为代表)的模拟研究取得大量进展,但相应的能够模拟自然地形上碎屑流的开源软件尚不多见。2007年美国纽约州立布法罗大学公开了一款结合颗粒薄层流模型和地理信息系统(GIS)的开源软件TITAN2D。在此,将TITAN2D中原来的HLL通量修改为耗散更小的HLLC通量,并增加了颗粒材料的停止准则。通过简单的颗粒堆积物和溃坝问题,验证了软件改进的有效性。进一步,利用中科院科学数据服务平台的DEM数据对重庆武隆鸡尾山滑坡、舟曲泥石流用干颗粒流进行数值模拟。通过调节底面摩擦角可以使计算结果大概反映实际灾害的泛滥范围,表明该软件值得进一步改进与发展。
Abstract:
The inundating zones and impacting forces of incurred by landslide-and avalanche-debris flows can be studied numerically by using shallow granular flow models. A shallow flow model is a set of approximate equations derived from depth average of the mass and momentum balance equations of fluid mechanics, and has attracted widespread attention due to its simplicity in analysis. Although a lot of simulation studies based on shallow granular flow models(typically the Savage-Hutter model)have been conducted in the past, few open source codes are available for modeling granular avalanche flows over natural terrains. In 2007 an open source code named TITAN2D was issued by the University at Buffalo. It features a combination of the shallow granular flow model with the geographic information system(GIS). In this paper, the numerical flux scheme used in the original TITAN2D is modified from HLL to HLLC scheme, and the stopping criteria for granular materials are added to TITAN2D. The effectiveness of the improved code is verified in simple granular pile and dam break problems. Furthermore, by utilizing the open digital elevation model(DEM)database at CAS-CSDB web site, Wulong Jiweishan landslide and Zhouqu debris flow were simulated as dry granular avalanches. Numerical results obtained by tuning the bed friction angle can partially reflect the inundating zones of the real disasters but reveal differences, indicating that TITAN2D is worthy of development and needs further improvement.

参考文献/References:

[1] 胡明鉴,汪稔,陈中学,王志兵. 泥石流启动过程PFC数值模拟[J]. 岩土力学, 2010,31(增1): 394-405[Hu Mingjian, Wang Ren, Chen Zhongxue, et al. Initiation process simulation of debris deposit based on particle flow code PFC [J]. Rock and Soil Mechanics, 2010, 31(Suppl.1): 394-405]
[2] Johnson A M. Debris flow. In: Slope instability [M], ed: Brunsden D and Prior DB. New York: John Wiley,1984:257-351
[3] Savage S B, Hutter K. The motion of a finite mass of granular material down a rough incline [ J ]. J. Fluid Mech,1989,199:177- 215
[4] 崔鹏. 泥石流起动条件及机制的试验研究[J]. 科学通报, 1991,21:1650-1652[Cui Peng. Study on conditions and mechanisms of debris flow initiation by means of experiment [J]. Chinese Science Bulletin, 1991, 21:1650-1652]
[5] 王光谦, 倪晋仁. 泥石流动力学基本方程[J]. 科学通报, 1994, 39(18):17001704[Wang Guangqian, Ni Jinren. Basic equations of debris flow dynamics[J]. Chinese Science Bulletin, 1994, 39(18):1700-1704]
[6] 刘学, 王兴奎, 王光谦. 基于GIS的泥石流过程模拟三维可视化[J]. 水科学进展, 1999, 10(4):388-392[Liu Xue, Wang Xinkui, Wang Guangqian. GIS-based 3-D visualization of debris process simulation [J]. Advances in Water Science, 1999, 10(4):388-392]
[7] Hungr O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches [J]. Canadian Geotechnical Journal, 1995, 32: 610-632
[8] Gray J, Wieland M, Hutter K. Gravity driven free surface flow of granular avalanches over complex basal topography [J]. Proc. R. Soc. London, Ser. A,1999,455:1841-1874
[9] Iverson R M. The physics of debris flows [J]. Rev. Geophys.,1997,35:245-296
[10] Iverson R M, Denlinger R P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory [J]. Journal of Geophysical Research, 2001, 106(No. B1):537-552
[11] Denlinger R P, Iverson R M. Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests [J]. Journal of Geophysical Research, 2001, 106(No. B1): 553-566
[12] Denlinger R P, Iverson R M. Granular avalanches across irregular three-dimensional terrain: 1. theory and computation [J]. Journal of Geophysical Research, 2004, 109(F1):337-357
[13] Takahashi T. Debris flow [M]. International Association for Hydraulic Research monograph. Rotterdam: Balkema, 1991.
[14] Chen H, Lee C F. Numerical simulation of debris flows [J]. Canadian Geotechnical Journal, 2000, 30: 146-160
[15] Pitman E B and Le L. A two-fluid model for avalanche and debris flows [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363: 1573-1601
[16] Mangeney-Castelnau A, Vilotte JP, Bristeau MO, et al. Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme [J]. Journal of Geophysical Research, 2003, 108: 2527
[17] Patra A K, Bauer A C, Nichita C C, et al. Parallel adaptive numerical simulation of dry avalanches over natural terrain [J]. Journal of Volcanology and Geothermal Research, 2005, 139:1-21
[18] 唐川. 泥石流堆积泛滥过程的数值模拟及其危险范围预测模型的研究 [J]. 水土保持学报,1994, 8(1): 45-50[Tang Chuan. Numerical simulation of debris flow inundation on the alluvial fans and its prediction model of the risk areas [J]. Journal of Soil and Water Conservation, 1994, 8(1): 45-50]
[19] 韦方强,胡凯衡,Lopez JL, 等. 泥石流危险性动量分区方法与应用[J]. 科学通报, 2003, 48(3):298-301[Wei Fanqiang, Hu Kaiheng, Lopez JL, et al. Method and application of the momentum model for debris-flow risk zoning [J]. Chinese Science Bulletin, 2003,48(3): 298-301]
[20] 王纯祥, 白世伟, 江崎哲郎,等. 基于GIS泥石流二维数值模拟[J]. 岩土力学, 2007, 28(7):1359-1368[Wang Chunxiang, Bai Shiwei, Esaki Tetsuro,et al. GIS-based two-dimensional numerical simulation of debris flow [J]. Rock and Soil Mechanics, 2007, 28(7):1359-1368]
[21] 李同春, 李杨杨, 章书成, 等. 泥石流泛滥区域数值模拟 [J]. 水利水电科技进展, 2008, 28(6):1-4[Li Tongchun, Li Yangyang, Zhang Shucheng, et al. Numerical simulation on inundation area of debris flow [J]. Advances in Science and Technology of Water Resources,2008, 28(6):1-4]
[22] 樊赟赟. 泥石流动力过程模拟及特征研究 [D]. 北京:清华大学,2010.[Fan Yunyun. Numerical simulation of debris flows and study of their characteristics [D]. Beijing: Tsinghua University doctoral thesis, 2010.]
[23] Chau K T, Lo K H. Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations [J]. Natural Hazards and Earth System Sciences, 2004, 4: 103-116
[24] Wu Jian, Chen Guangqi, Zheng Lu, ZhangYingbin. GIS-based numerical modeling of debris flow motion across three-dimensional terrain [J]. J. Mt. Sci., 2013, 10(4): 522-531
[25] 兰恒星,周成虎,王小波. 泥石流本构模型及动力学模拟研究现状综述[J]. 工程地质学报, 2007, 15(3): 314-321[Lan Hengxing, Zhou Chenghu, Wang Xiaobo. A literature review on debris flow constitute model and its dynamic simulation[J]. Journal of Engineering Geology, 2007, 15(3): 314-321]
[26] O'Brien J S, Julien P Y, Fullerton WT. Two-dimensional water flood and mudflow simulation [J]. J. Hydraul. Eng., 1993, 119(2): 244-261
[27] 余斌. 美国纽约州立大学布法罗分校火山碎屑流和泥石流数学模型研究近况 [J]. 山地学报, 2005, 23(1): 126-128[Yu Bin. Research on the numerical model of pyroclastic flow and debris flow in the State University of New York at Buffalo [J]. Mountain Research, 2005, 23(1): 126-128]
[28] Yu B, Dalbey K, Webb A, et al. Numerical issues in computing inundation areas over natural terrains using Savage-Hutter theory [J]. Nat Hazards, 2009, 50: 249-267
[29] GMFG. Titan2d user guide [R/OL]. 2007.
[2014-08-10] http://www.gmfg.buffalo.edu.
[30] Maeno F, Hogg A J, Sparks R, Matson G. Unconfined slumping of a granular mass on a slope[J]. Physics of Fluids, 2011, 25: 023302.
[31] 樊赟赟,王思敬,王恩志. 一维泥石流的静动力阻力特征研究及数值模[J]. 工程地质学报, 2010, 18(6): 857-861[Fan Yunyun, Wang Sijing, Wang Enzhe. Characteristics of static and ynamic resistance of one-dimensional debris flow and its numerical simulation [J]. Journal of Engineering Geology, 2010, 18(6): 857-861]
[32] Juez C, Murillo J, Garcia-Navarro P. 2D Simulation of granular flow over irregular steep slopes using global and local coordinates [J]. Journal of Computational Physics, 2013, 255:166-204
[33] 高杨, 殷跃平, 邢爱国, 等. 鸡尾山高速远程滑坡-碎屑流动力学特征分析 [J]. 中国地质灾害与防治学报, 2013, 24(4): 46-51[Gao Yang, Yin Yueping, Xing Aiguo, et al. Jiweishan rapid and long run-out landslide-debris flow dynamic characteristics analysis [J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4):46-51]
[34] Hungr O, Morgenstern N R. Experiments on the flow behavior of granular materials at high velocity in an open channel flow [J]. Geotechnique, 1984, 34: 305-413
[35] 余斌,杨永红,苏永超,等. 甘肃省舟曲8.7特大泥石流调查研究[J]. 工程地质学报,2010, 18(4):437-444[Yu Bin, Yang Yonghong, Su Yongchao, et al. Research on the giant debris flow hazards in Zhouqu county, Gansu province, August 7, 2010 [J]. Journal of Engineering Geology, 2010, 18(4):437-444]

备注/Memo

备注/Memo:
收稿日期(Received date):2014-08-29; 修回日期(Accepted):2014-10-23。
基金项目(Foundation item):国家973计划资助项目(2010CB731505), 国家自然科学基金资助项目(11261160486, 11321061)。[National Basic Research Program(973-program)(2010CB731505), National Natural Science Foundation of China(11261160486, 11321061).]
作者简介(Biography):袁礼(1963-),男,重庆人,博士,研究员。主要从事计算流体力学研究工作。[Yuan Li(1963-), male, born in Chongqing, PhD, Professor, mainly engaged in research of computational fluid dynamics. ] Tel: 010-82541933, E-mail: lyuan@lsec.cc.ac.cn
更新日期/Last Update: 2016-05-30