[1]何 坤,沈军辉,刘 海,等.稀性坡面泥石流粗颗粒在不同水力作用下的起动[J].山地学报,2015,(06):721-725.[doi:10.16089/j.cnki.1008-2786.000087]
 HE Kun,SHEN Junhui,LIU Hai,et al.Starting Contidtions of the Coarse Particles about Diluted Slope Debris Flows under Clear Water Conditions[J].Mountain Research,2015,(06):721-725.[doi:10.16089/j.cnki.1008-2786.000087]
点击复制

稀性坡面泥石流粗颗粒在不同水力作用下的起动()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2015年06期
页码:
721-725
栏目:
山地灾害
出版日期:
2015-12-01

文章信息/Info

Title:
Starting Contidtions of the Coarse Particles about Diluted Slope Debris Flows under Clear Water Conditions
作者:
何 坤1沈军辉1刘 海12童建波1蔺 力1
1.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059; 2.安徽省公益性地质调查管理中心,安徽 合肥 230040
Author(s):
HE Kun1SHEN Junhui1LIU Hai12 TONG Jianbo1LIN Li1
1. State Key Laboratory of Ceohazard Prevention and Ceoenvironment Protection,Chengdu University of technogy Chengdu 610059, China; 2. The Geological Survey Management Center of Anhui charityi,Hefei,Anhui 230040,China
关键词:
稀性坡面泥石流 起动流速 立方体 滑移起动 翻转起动
Keywords:
diluted slope debris flows starting way starting velocity cube slip start flip start
分类号:
P642. 23
DOI:
10.16089/j.cnki.1008-2786.000087
文献标志码:
A
摘要:
“5.12”汶川地震产生了大量崩滑堆积体,这些棱角状粗颗粒体在水流激发下易起动形成坡面泥石流。在对汶川地震区坡面泥石流地质模型调研基础上,建立以立方体为稀性坡面泥石流粗颗粒的基本模型,结合坡面泥石流的宽级配特性,提出立方体模型的滑移、翻转(包括绕边翻转、绕支点翻转及嵌固绕边翻转)等起动方式。并以水力学、泥沙动力学为理论基础,推导得出粗颗粒在滑移、翻转起动方式下的起动平均流速公式。参照陈伯奇的实验数据,计算粒径为5~10 mm颗粒在不同坡度条件下的起动流速,并对比显示两者具有较好的吻合性,表明立方体作为稀性坡面泥石流粗颗粒的起动模型是合理的。计算结果也表明,在同一坡度条件下,粗颗粒滑移起动所需的水流激发流速最低,绕边起动次之,颗粒嵌固起动所需的激发流速最大,如坡度为30°条件下,滑移起动的水流激发流速为0.349 m/s,绕边起动为0.430 m/s,嵌固起动为0.473 m/s。据此推断,当水流达到一定流速(如30°坡度下、流速为0.349 m/s)时,粗颗粒的最初起动以滑移为主; 随着流速增大,逐渐出现翻转起动; 当水流流速急剧增大时,大部分嵌固粗颗粒会以翻转的方式瞬间起动,从而形成稀性坡面泥石流。成果对稀性坡面泥石流起动条件研究具有一定的理论意义,对泥石流灾害预警具有一定的指导作用。
Abstract:
“5.12”Wenchuan earthquake generated a lot Slumping Mass, the angular coarse particles on slope are easy to start forming debris flow Under water erosion. This article is on the basis of the Geological research model of the earthquake debris flow on slope, established the basic model of the cube as the coarse particle of the lean debris flow on slope, combined with a wide size distribution characteristics of the debris flow on slope, the cube model contain the slip, flip(including around the edge flip, flip around and embedded solid fulcrum around the edge flip)and other start-up mode, and the theory are based on the hydraulics, sediment dynamics, deducing the starting average velocity formula of the coarse particles in the slip. Referring Chen Qibo experimental data, we calculate the starting velocity when the diameter of particles is 5~10 mm at different slope conditions, the comparison of the data showed good agreement between the two, indicating that the cube as a starter model of debris flow on slope dilute coarse particles is reasonable. The results also show that, under the same gradient conditions, the Stimulate the flow rate of coarse starting slip is the minimum, followed by winding start side, the flow rate of solid particles embedded in the excitation required for starting is the maximum. For examples, the gradient is 30° under the conditions of starting the slip velocity of the flow excitation 0.349 m/s, about the starting edge of 0.430 m /s, embedded solid starter is 0.473 m / s. As we can infer from this, when the water reaches a certain velocity(such as flow velocity below 30° slope of 0.349 m/s), the coarse particles initially start to slip; as the flow rate increases, the gradual emergence of flip start; when the flow velocity increases sharply, most embedded solid coarse particles to flip instant way to start to form a dilute of debris flow on slope, thereby forming a dilute of debris flow on slope. The achievement has some theoretical significance for thinning of debris flow on slope starting conditions study, debris flow disaster warning has a guiding role.

参考文献/References:

[1] Xie Hong,Zhong Dunlun,Jiao Zheng,et al.Debris flow in Wenchuan earthquake-hit area in 2008[J].Mountain Research,2009,27(4):507-509 [谢洪,钟敦伦,矫震,等.2008年汶川地震重灾区泥石流[J].山地学报,2009,27(4):507-509]
[2] Han Qiwei,He Weiming. Sediment movement statisticaltheory [M].Beijing:Science Press,1984:101-103 [韩其为,何为民.泥沙运动统计理论[M].北京:科学出版社,1984:101-103]
[3] Kramer H.Sand mixtures and Sand Movement in Fluvial Modal [J].Trans,ASCE,1935,100:798-838
[4] Dou Guoren,Again start on the sediment flow rate [J]. Sediment Research,1999,6:1-7 [窦国仁.再论泥沙起动流速[J].泥沙研究,1999,6:1-7]
[5] Han Qiwei,He Weiming. Sediment start rule and starting velocity [M].Beijing: Science Press,1999 [韩其为,何明民.泥沙起动规律及起动流速[M].北京:科学出版社,1999]
[6] He Wendu. Nonuniform sediment characteristics[D].Chengdu:Sichuan University,2002:46-47 [何文社.非均匀沙运动特性研究[D].成都:四川大学,2002:46-47]
[7] Cheng Qibo,Jie Mingshu, Zhang Hongjiang.SanXia dam area noncohesive uniform granite sand starter Conditions [J].Peoples of the Yangtze River, 1996,27(7):13-14 [陈奇伯,解明曙,张洪江.三峡坝区非粘性均匀花岗岩砂粒起动条件研究[J].人民长江,1996,27(7):13-14]
[8] Qian Ning,Wan Zhaohui.Sediment movement [M].Beijing: Science Press,1983:53-55 [钱宁,万兆惠.泥沙运动[M].北京:科学出版社,1983:52-55

备注/Memo

备注/Memo:
收稿日期(Received date):2014-09-23; 修回日期(Accepted):2015-02-01。 基金项目(Foundation item):高等学校博士学科点专项科研基金(博导类)资助课题(20115122110012)。[Higher Specialized Research Fund for the Doctoral Program(Ph.D. class)funded project.] 作者简介(Biography):何坤(1988-),男,硕士研究生,从事岩土体稳定性研究。[He Kun,Master Degree.His research foucses on geotechnical stability.] E-mail:9133219112qq.com *通信作者(Corresponding author):沈军辉,男,教授,博士生导师,从事工程地质、环境地质研究。[Shen Junhui, Professor. His research fouses on engineering geology and environmental geology.] E-mail: 820747923@ qq.com
更新日期/Last Update: 1900-01-01