[1]陆恒,魏文寿,刘明哲,等.融雪期天山西部森林积雪表面能量平衡特征[J].山地学报,2015,(02):173.
 LU Heng,WEI Wenshou,et al.The Characteristic of Energy Budget on Snow Surface beneath Picea Schrenkiana Forest in the West Tianshan Mountains of China during Snowmelt Period[J].Mountain Research,2015,(02):173.
点击复制

融雪期天山西部森林积雪表面能量平衡特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2015年02期
页码:
173
栏目:
山地环境
出版日期:
2015-04-01

文章信息/Info

Title:
The Characteristic of Energy Budget on Snow Surface beneath Picea Schrenkiana Forest in the West Tianshan Mountains of China during Snowmelt Period
作者:
陆恒;魏文寿;刘明哲;洪雯;韩茜;
中国科学院新疆生态与地理研究所;中国科学院大学;中国气象局乌鲁木齐沙漠气象研究所;中国科学院天山积雪与雪崩研究站;
Author(s):
LU HengWEI WenshouLIU MingzheHAN XiHONG Wen
1.Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 2.Graduate School University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Desert Meteorology, CMA, Urumqi 830002, China; 4. Tianshan Station for snow & Avalanche Research, Urumqi 830011, China
关键词:
融雪期森林积雪能量平衡
Keywords:
snowmelt period forest snow energy budget
分类号:
P343,P426.63
文献标志码:
A
摘要:
通过对2013年春季中国科学院天山积雪与雪崩研究站站区内阳坡开阔地和阴坡雪岭云杉80%和20%开阔度林冠下气温、大气湿度、风速以及雪面短波和长波辐射的观测研究,分析了融雪期不同开阔度林冠下积雪表面能量平衡特征。结果表明:由于植被影响,阴坡雪岭云杉林冠下积雪表面净短波辐射和显热明显小于阳坡开阔地,但净长波辐射损失小于阳坡开阔地。阴坡林冠下积雪表面总能量明显小于阳坡开阔地,因此阴坡森林积雪融雪开始消融和结束时间明显晚于阳坡开阔地。在阴坡,林冠开阔度越大,雪面获得的净短波辐射和显热越大,但损失的净长波辐射和潜热也越大。不同开阔度林冠下和阳坡开阔地积雪表面的净短波辐射、显热和潜热有相同的日变化特征,但...
Abstract:
Air temperature, relative humility, wind speed, shortwave and longwave radiation beneath 80% and 20% canopy openness forest (shady slope) and in runoff field (sunny slope) were measured in Tianshan Research Station for Snow Cover and Avalanche of Chinese Academy of Sciences in the spring of 2013. The characteristics of energy budget on forest snow surface during snowmelt period were analyzed. The results showed, due to the effect of forest, the net shortwave radiation and sensible heat flux on snow surface beneath forest canopy at the shady slope were significantly lower than that at open site at sunny slope, but the loss of net longwave radiation on snow surface beneath forest canopy was lower than that at open site. The total energy heat flux on snow surfsce beneath forest canopy was significantly lower than that at open site, thus, the start and end time of snow melt beneath forest canopy were significantly later than that at open site. Beneath forest canopy at shady slope, the larger the forest canopy was, the higher the gain of sensible heat flux and net shortwave radiation were, the higher the loss of latent heat flux and net longwave radiation were. The daily variation of net shortwave radiation, sensible heat flux, latent heat flux on snow surface beneath different canopy openness forest and on sunny slop was similar, but the sensible heat flux and latent heat flux on snow surface beneath forest at nighttime were almost equal to 0 W/m2. Under the influence of vegetation, the daily variation of longwave radiation on snow surface beneath forest was significantly different with the daily variation in sunny slope.

参考文献/References:

[1]Boons. Snow ablation energy balance in a dead forest stand[J]. Hydrological processes, 2009, 23:2600-2610
[2] Marks D, Winstral A, Flerchinger G, et al. Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model[J]. Journal of Hydrometeorology, 2008, 9(6): 1506-1522
[3] Harding R, Pomeroy J. The energy balance of the winter boreal landscape[J]. Journal of Climate, 1996, 9:2778-2787
[4] Li Weiping,Sun Shufen, Liu Xin, et al. A case study of the influence of needle leaf forest canopy on the radiation Transfer over Alps Mountain[J]. Plateau Meteorology, 2008, 27(4): 749-756.[李伟平, 孙淑芬, 刘新, 等. 阿尔卑斯山杉林冠层影响辐射传输的个例分析[J]. 高原气象, 2008, 27(4): 749-756]
[5] Ji Chunrong, Zou Chen, Fan Ziang, et al. Radiation characteristics of Picea Schrenkiana forest area in middle Tianshan mountains of China[J]. Journal of Arid Land Resource and Environment, 2011, 25(12): 82-88[吉春容, 邹陈, 范子昂, 等. 天山中段雪岭云杉林区辐射特征分析[J]. 干旱区资源与环境, 2011, 25(12): 82-88]
[6] Hardy J, Davis R, Jordan R, et al. Snow ablation modelling in a mature aspen stand of the boreal forest[J]. Hydrological processes, 1998, 12:1763-1778
[7] Hardy J, Melloh R, Robinson P, et al. Incorporating effects of forest litter in a snow process model[J]. Hydrological Processes, 2000, 14(18): 3227-3237
[8] Barry R, Prevost M, Stein J, et al. Application of a snow cover energy and mass balance model in a balsam fir forest[J]. Water Resources Research, 1990, 26(5): 1079-1092
[9] US Army Corps of Engineers. Snow hydrology: summary report of the snow investigations[R]. North Pacific Division. Corps of Engineers: Portland. OR,1956: 358
[10] Link T, Marks D. Distributed simulation of snowcover mass- and energybalance in the boreal forest[J]. Hydrological Processes, 1999, 13(14):2439-2452
[11] Pomeroy J W, Marks D, Link T, et al. The impact of coniferous forest temperature on incoming longwave radiation to melting snow[J]. Hydrological Processes, 2009, 23(17): 2513-2525
[12] Rowlands A, Pomeroy J, Hardy J, et al. Smallscale spatial variability of radiant energy for snowmelt in a midlatitude subalpine forest[G]//Proceedings from the 59th Eastern Snow Conference, 2002: 109-117
[13] Ellis C. Radiation and snowmelt dynamics in mountain forests[D]. Saskatoon:University of Saskatchewan,2011.
[14] Hedstrom N R, Pomeroy J W.Accumulation of intercepted snow in the boreal forest: measurement modeling[J].Hydrological Processes, 1998, 12:1966-1623
[15] Niu G Y, Yang Z L. Effects of vegetation canopy processes on snow surface energy and mass balances[J]. Journal of Geophysical Research, 2004, 109, D23111.
[16] Murray C D,Buttle J M.Impacts of clearcut harvesting on snow accumulation and melt in a northern hardwood forest[J].Journal of Hydrology, 2003, 271:197~212
[17] Jiao Jian, Xie Yun, Lin Yan, et al. Study on snowmelt runoff and sediment yields in Northeast China[J]. Geographical Research, 2009, 28(2): 333-344.[焦剑, 谢云, 林燕, 等.东北地区融雪期径流及产沙特征分析[J].地理研究, 2009, 28(2): 333-344]
[18] Ellis C R, Pomeroy J W. Estimating subcanopy shortwave irradiance to melting snow on forested slopes[J]. Hydrological Processes, 2007, 21(19): 2581-2593
[19] Cong Zhefu. A microclimatic Observation on Picea Schrenkiana Var. tianshanica Gorest in middle forest zone of northern slope of Tianshan Mountain[J].Journal of Xinjiang Agricultural University,1997,20(3): 23-28[丛者福. 天山北坡中部林区天山云杉林小气候观测. 新疆农业大学学报[J].1997,20(3): 23-28]
[20] Hao Shuai, Liu Ping, Zhang Yutao, et al. Research of microclimatic characters of Tianshan Mountain spruce forest in the middle laction of Tianshan Mountaion[J]. Journal of Xinjiang Agricultural University, 2007, 30(1): 48-52[郝帅, 刘萍, 张毓涛, 等. 天山中段天山云杉森林小气候特征研究[J]. 新疆农业大学学报, 2007, 30(1): 48-52]
[21] Ma Hongru,Ji Chunrong,Li Xinjian,et al.Observation and analysis on microclimate in the nature forest zone in the central Tianshan Mountains[J].Arid Zone Research,2011,28(2):251-254[马鸿儒, 吉春容, 李新建, 等. 天山中部白杨沟天然林区森林小气候观测与研究[J]. 干旱区研究, 2011,28(2):251-254]
[22] Zhang Zhen, Liu Ping, Ding Yi, et al. Species compositions and spatial distribution pattern of tree individuals in the schrenk spruce forest, northwest China[J]. Journal of Nanjing Forestry University:Natural Science Edition, 2010,34(5):157-160[张震,刘萍,丁易,等.天山云杉林物种组成及其种群空间分布格局[J]. 南京林业大学学报:自然科学版,2010,34(5):157-160]
[23] Frazer G, Canham C, Lertzman K. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from truecolour fisheye photographs, users manual and program documentation[R]. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York 36, 1999.
[24] Jin J, Gao X, Sorooshian S, Yang Z L, et al. Onedimensional snow water and energy balance model for vegetated surfaces[J]. Hydrological Processes, 1999, 13(1415): 2467-2482
[25] Andreas E. Parameterizing scalar transfer over snow and ice: A review[J]. Journal of Hydrometeoroogy, 2002, 3(4): 417-432
[26] Male D,Gray D.Handbook of Snow,Principles,Processes,Management and Use[M]. Toronto:Pergammon Press,1981:360-436
[27] Verseghy D. CLASS-A Canadian land surface scheme for GCMs. I. Soil model[J]. International Journal of Climatology, 1991, 11(2): 111-133
[28] LaChapelle E. Properties of snow[R]. Prepared for Hydrologic Systems course presented by College of Forest Resource, Nov. 17-18. Seattle:University of Washington, 1969: 21
[29] de la Casiniere A. Heat exchange over a melting snow surface[J]. Journal of Glaciology, 1974, 13: 55-72
[30] Calanca P, Heuberger R. Energy balance[M]. Glacial Climate Research in the Tianshan. A. Ohmura A, Lang H, Blumer F, et al (Eds). Zurcher Geographische Schriften, Vol. 38, ETH Geographisches Institut, 1990: 60-70
[31] Marks D,Dozier J.Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada.Part III:Snow cover energy balance[J]. Water Resource Research,1992,28,3043-3054
[32] Aizen V, Aizen E, Melack J. Snow distribution and melt in central Tien Shan, Susamir Valley[J]. Arctic and Alpine Research, 1997:403-413
[33] Moore R, Owens I. Controls on advective snowmelt in a maritime alpine basin[J]. Journal of Climate Application Meteorology, 1984:23,135-142
[34] Davis R, Hardy J, Ni W, et al. Variation of snow cover ablation in the boreal forest: A sensitivity study on the effects of conifer canopy[J]. Journal of Geophysical Research,1997,102(D24):29389-29395
[35] Hardy J, Davis R, Jordan R, et al. Snow ablation modeling at the stand scale in a boreal jack pine forest[J]. Journal of Geophysical Research, 1997, 102(D24):29397-29405
[36] Koivusalo H, Kokkonen T. Snow processes in a forest clearing and in a coniferous forest[J]. Journal of Hydrology, 2002, 262(1-4): 145-164
[37] Link T, Marks D. Point simulation of seasonal snow cover dynamics beneath boreal forest canopies[J]. Journal of Geophysical Research, 1999, 104(D22): 27841-27857
[38] Metcalfe R, Buttle J. A statistical model of spatially distributed snowmelt rates in a boreal forest basin[J]. Hydrological Processes, 1998,12:1701-1722
[39] Berry G, Rothwell R. Snow ablation in small forest openings in southwest Alberta[J]. Canadian Journal of Forest Research, 1992, 22(9): 1326-1331
[40] Suzuki K, Ohta T, Kojima A, et al. Variations in snowmelt energy and energy balance characteristics with larch forest density on Mt Iwate, Japan: observations and energy balance analyses[J]. Hydrological Processes, 1999, 13(17): 2675-2688
[41] Buttle J, McDonnell J. Modelling the areal depletion of snowcover in a forested catchment[J]. Journal of Hydrology, 1987, 90(1-2):43-60

备注/Memo

备注/Memo:
收稿日期(Received date):2014-05-15;改回日期(Accepted) : 2014-09-01。
基金项目(Foundation item):国家科技支撑计划项目(2012BAC23B01), 国家自然科学基金(41271098, 41171066) [ National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2012BAC23B01), National Natural Science Foundation of China(41271098, 41171066).]
作者简介(Biography):陆恒(1986-),男,汉族,四川广元人,在读博士生,研究方向为积雪水文。[Lu Hen,male,from Guangyuan of Sichuan,Ph.D.,research fields of snow hydrology.] Tel: 18699150305, E-mail: luhengwzs@163.com *
通信作者(Corresponding author):魏文寿,研究员,博士生导师。[Wei Wenshou,professor,doctoral tutor.] E-mail: weiwsh@idm.cn
更新日期/Last Update: 1900-01-01